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Abstract: A variety of potential polymers with chemical and physical stability
characteristics  and  abundant  availability  lead  to  the  rapid  application  of
polymers  in  various  fields.  One  of  the  crucial  things  that  are  crucial  to  be
discussed from such polymers is the characteristic of thermal behavior. Each
type  of  polymer  such  as  natural  and  synthetic  has  different  thermal
characteristics, including Tc, Tg, Tm, and Td which can be the determining
factor  of  polymer selection of  processing and application temperature.  The
thermal  properties  will  also  affect  molecular  interactions,  physical  stability  in
manufacturing, distribution, and storage. Therefore, in this article will appoint a
study on the thermal characteristics of natural and synthetic polymers, the
effect of modification on the thermal properties of polymers, efforts to increase
the stability of thermal, and polymer applications in the field of pharmaceutical
technology.

Introduction
Polymers  have  been  used  extensively  in  the
pharmaceutical,  food,  and  cosmetics  industries.  For
example,  they  are  thickening,  gelling,  stabilizing,
coating,  viscosity,  and  surfactant  agents  (1).  Those
functions are supported because polymers have good
chemical stability, adequate mechanical stability, high
water  solubility,  large  molecular  weight,  degree  of
polymerization,  crystallinity,  commercial  availability,
and  various  natural  and  synthetic  polymers  (2,  3).
Generally,  natural  biopolymers  are  polysaccharides
and proteins, while synthetic polymers are polyester
and aliphatic synthesized (4). Considering the various
potentials offered, it  is appropriate that the discussion
on  polymers  gets  special  attention,  especially  in
pharmaceutical technology.

In  pharmaceutical  technology,  especially  in  solid-
state,  polymers  are  widely  used  to  increase  the
solubility  of  active  pharmaceutical  ingredients,
increase  amorphous  stability,  protect  active
pharmaceutical  ingredients  from  environmental
influences,  and  as  a  base  for  drug  delivery  (1).
Considering the function of polymers widely used in
solid-state, studies of the physicochemical properties
of polymers, especially the thermal properties, need to
be improved.

Some  important  points  regarding  the  thermal
properties of polymers, including Tc, Tg, Tm, and Td,
will  affect  the  physical  stability  of  the  polymer.
Generally,  the  thermal  properties  are  specifically
analyzed by using DSC and TGA (5).  Specific points at
each  presented  peak  certainly  regardless  of  the
presence  of  intermolecular  forces,  chain  stiffness,
crosslinking, pedant groups, plasticizers, and molecular
weight based on the characteristics of the polymer (6).

Therefore, this article focuses on thermal properties
and  efforts  to  improve  the  stability  of  thermal
polymers,  the  effect  of  modifications  on  the  thermal
properties  of  polymers,  and  the  analysis  of  the
phenomena that occur when polymers are applied in
solid-state. This article's purpose is to present each of
the  thermal  properties  of  natural  and  synthetic
polymers  to  facilitate  the  selection  of  polymers
according to the needs, methods, and treatments used,
and  storage  based  on  each  thermal  polymer's
properties.

Methodology
This  review  employed  literature  originating  from
Sciencedirect,  PubMed, and Google Scholar by using
the  keywords'  thermal  properties  of  polymers',
'thermal behavior of polymers', 'thermal techniques in
the  characterization  of  polymers' ,  'natural
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biopolymers',  and 'synthetic  polymers'.  The selected
literature  includes  research  on  the  thermal
characteristics of biopolymers and synthetic polymers
in a solid-state applied for use in the pharmaceutical
field. We exclude review literature and literature that is
not  applied  in  the  pharmacy  field.  A  flowchart  of  the
methodology can be seen in Figure 1.

Figure 1. Flowchart of the methodology.

Discussion
Importance of Thermal Behavior Polymers
Understanding polymer thermal behavior is essential
because  it  affects  its  characteristics  when  heat  is
added  to  or  removed  from a  material  (7).  We  can
understand  the  proper  storage  characteristics  by
knowing  the  thermal  characteristics  (8).  Specific
thermal behavior analysis can use differential scanning
calorimetry  (DSC)  and  thermogravimetric  analysis
(TGA)  methods  (9).  The  analysis  showed  the
relat ionship  between  Tg,  Tm,  Tc,  and  Td  as
temperature range parameters and crystallinity levels
(7,  10).  Thermal  characteristics  such  as  thermal
equilibrium  and  thermodynamics,  thermal  capacity,
and  phase  separation  conditions  are  generally
influenced by temperature, density, porosity, humidity,
crystallinity, molecular size, and impurities (7, 11, 12).
Therefore, the thermal behavior characteristics of the
polymer  are  fundamental  to  obtaining  the  best
performance when applied.

Natural Biopolymers
B i o p o l y m e r s  a r e  m a c r o m o l e c u l e s  f r o m
microorganisms,  hydrocarbons,  fats,  proteins,  and
nucleic  acids  (4).  Many  applications  use  natural
biopolymers  in  the  solid  state,  so  this  section  will
specifically  discuss  the  thermal  properties  of  each
biopolymer  presented  in  Table  1.

Agar
Agar is a biopolymer of the polysaccharide group. Its
constituent  structure  consists  of  β-1,  3-link  D-
galactose,  and  α-1,  4-linked  unit  3,  6-anhydro-L-
galactose in which the side chain substituents contain
sulfate ester, a group of methoxyl and pyruvate (31).

However,  when  used,  agar-based  films  have  several
critical  limitations,  such  as  thermal  stability  (32).
Therefore,  to  increase  agar's  thermal  stability,  a
material with a Tm / Tg higher than Tm / Tg agar needs
to be added.

It is known that agar will start losing its weight at
temperatures of 80 – 120 °C and 180 – 240 °C, while
Td is 300 – 320 °C. This is related to the agar's volatile
nature, which is easy to decompose. In the research
conducted by Wang et al. (13), the addition of Bacterial
cellulose  (BC)  to  the  polymer  resulted  in  increased
crystallinity,  purity,  and  polymerization  properties,
excellent  biodegradability,  and  high  mechanical
stability. BC could improve thermal and agar weight
stability based on the results obtained. It could be seen
from the results obtained at temperatures of 303.9 °C
(0% BC), 308.4 °C (8% BC), and 315.6 °C (10% BC).
Interactions that form hydrogen bonds between agar
and BC in the form of crystals caused thermal stability
to  increase  (33).  Based  on  the  findings,  BC  has  the
potential to be used as a thermal stability enhancer of
biopolymer.

Alginate
The  thermal  properties  of  alginates  which  are
crystalline compounds have a Tend of 74 °C due to loss
of  water  content  and  Texo  of  244  °C  due  to
degradation  (34).  The  reported  results  further
strengthen the thermal properties, which also obtained
Tend of 76 °C and Texo of 245 °C (35). 

The  application  of  alginate  in  pharmaceutical
technology  used  alginate  as  stabilizing  in  a  solid
dispersion  system  (15,  16).  Borba  et  al.  (15)
experimented  on  telmisartan  (TEL)  analyzed  using
DSC. TEL experienced an endothermic event at 265.28
°C. The incident was caused by the characteristics of
the TEL that used anhydrous in the form of crystalline.
In  the  TEL-Alginate  mixture,  the  thermal  properties
changed,  with  endothermic  events  at  245  °C  and
exothermic events at 25 °C, which are signs of physical
interaction  between  TEL  and  alginate.  If  only
exothermic  events  occur,  TEL  is  scattered  in  an
amorphous  form  and  forms  a  strong  bond  with
alginate. Unlike the research done by Guan et al. (16)
with  the  lovastatin  drug  (LOV),  which  also  uses
alginate,  no  significant  thermal  changes  occurred  in
the  mixture.  Lovastatin,  as  a  crystalline  form,
experiences endothermic events at a temperature of
174.5 °C, and a mixture of endothermic events occurs
at a temperature of 175.4 °C. This indicates that there
is no interaction between the drug and the polymer.
Based on the reported above, even the same polymer
will  produce  different  thermal  properties.  This  is
influenced by crystallinity, thermal properties of active
substances, drug-polymer ratio, and mixing methods.
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Table 1. Thermal behavior of natural biopolymers.

Polymer Thermal
analysis

Polymer thermal
behavior

Polymer characteristic Ref.

Agar DTA
TGA

Td: 300 – 320 °C
WL1: 80 – 120 °C
WL2: 180 – 240 °C

Agar experiences two phases of degradation (13)

DSC To: 81 °C
Tp: 81.9 °C
Te: 82.9 °C

The higher the concentration, the higher the agar Tp
will be.

(14)

Alginate
 

DSC Tend: 74 °C
Texo: 244 °C

Temperature affects the evaporation of water in
alginate; therefore, there is decreasing in the MW of
alginate.

(15)

DSC
 

Tend: 76 °C
Texo: 245 °C

Temperature influences the evaporation of water in
alginate; therefore, there is decreasing in the MW of
alginate.

(16)

Carrageenan DSC Tg: 108.1 °C
ΔH: 10.553 J/g

Tg is influenced by the synthesis method of
carrageenan.

(17)

Cellulose DSC Tm: 48 °C Temperature affects the elasticity of gel. (18)
Chitosan DSC Tend: 195 – 220°C

 
Chitosan oligosaccharide with MW 3900 Da has a
higher Tend.

(19)

DTA Tend: 175 °C Tend is affected by the purity of chitosan, i.e.87.5%. (20)
TGA BPEO – chitosan

Td: 150 – 220 °C, WL: 20%
Td: 220 – 364 °C WL: 62%

The concentration ratio of the mixture also influences
the Tdeg and WL.

(21)

Collagen TGA
DSC

Tend: 50 – 100 °C
Texo: 250 – 350 °C

Tend and Texo were influenced by the composition of
collagen.

(22)

Dielectric Td
Col: 75°C
Col-DHT: 83 °C
Col-EDC/NHS: 89 °C

Addition of DHT and EDC/NHS increases the Tdeg
collagen.

(23)

Gelatin mDSC
 

Tend gelatin: 35 °C The bond transition from helix to coil induces a low
Tend of gelatin.

(24)

mDSC Tg gelatin 50PS: 145.2 °C Gelatin 50PS produces higher Tg and increases
thermal stability.

(25)

mDSC Tend gelatin: 40 °C
Tend gelatin – genipin: 61 –
65 °C

Cross-linked increases the Tend of gelatin. (26)

Pectin DSC Tend: 105.64 – 113.81°C
ΔH: 99.4J/g – 107.7J/g

Amorphous or semicrystalline molecule induces
melting when heated.

(27)

DSC
TGA

Td 1%: 185 °C
Td 5%: 220 °C
Tmax: 244 °C
Residue of T 700 °C: 23.8%

The higher concentration is, also the higher Td will be. (28)

DSC
TGA

Td: 210 °C
WL 20%
Td: 240 – 340 °C, WL 50%

Increasing temperature affects WL. The higher
temperature is, also the higher % of WL will be

(29)

Starch DSC Tm type I: 60 °C
Tm type II: 90 °C

Type of amylose crystallinity influences Tm (30)

Xanthan gum DSC To: 81.2 °C
Tp: 82.3 °C
Te: 83.5 °C

Concentration influences the Tp of Xanthan gum. The
higher concentration is, also the higher Tp will be

(14)

Carrageenan
Carrageenan  has  been  widely  used  because  of  its
physicochemical properties and commercial functions.
Applied κ-carrageenan to improve the thermal stability
of casein (36). Based on studies reported that casein
was stable at 100 °C but experienced an endothermic

event around 115.8 °C (37). At the same time, the type
of  κ-carrageenan has  a  Tg  of  108.1  °C  with  ΔH of
10.553  J/g  (38).  Because  of  the  difference  in  thermal
properties of each substance, they produced a thermal
property that is in the middle of both when mixed. The
increased  Tg  value  (up  to  127.2  °C)  resulted  from
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adding  κ-carrageenan  to  casein.  The  ΔH value  also
increased to -89.22 J/g. This is caused by electrostatic
interactions  and  the  formation  of  hydrogen  bonds
between  κ-carrageenan  and  protein  domains  (36).
Based on this study, biopolymers not only can be used
as pharmaceutical active ingredient polymers but are
also able to interact with proteins, followed by changes
in ΔH values.

Chitosan
The thermal properties of chitosan have Tg 203 °C and
endothermic events at temperatures of 195 – 220 °C
due  to  the  degradation  of  saccharide  rings  (39).
Because of it, chitosan is very suitable for protecting
thermolabile  or  volatile  APIs.  Chitosan  dispersed  in
Bunium  persicum  boiss.  Oil  (BPEO)  experienced  an
increase in temperature degradation. Pure BPEO at a
temperature of 30 – 169 °C experienced 91% weight
loss, while Ne-BPEO at a temperature of 150 – 220 °C
experienced a weight loss of 20 °C (21). In addition,
chitosan also maintains the amorphous stability of the
active substance because it can prevent crystal lattice
formation from the active substance. The results of the
DSC  analysis  indicate  this.  The  sample  was  in  the
amorphous  phase  if  the  Tg  value  was  obtained.
However,  this  was  influenced  by  comparing  each
substance,  which  also  impacts  the  Tg  value  (19).

Collagen
When  the  collagen  is  given  thermal  influence,  three
helices in the collagen chain will be easily denatured.
Denaturation  temperature  in  collagen  can  also  affect
enzymatic behavior that will cause changes in physical
stability (40). However, the nature of thermal collagen
is  also  influenced  by  the  origin  of  collagen.  Collagen
derived from marine fish has higher thermal properties
by  1.7  °C  than  collagen  originating  from  cultured  fish
(41).

When bacterial cellulose (BC) is added to collagen
at temperatures of 200 °C and 400 °C, the composite
loses weight by 1.4% and 25%. Even BC can reduce
collagen's  moisture  retention  from 30.5% to  26.4%.
With BC, thermal collagen properties can be increased
four times compared to before (22). Other efforts with
the addition of dehydro thermal treatment (DHT) and
1-ethyl-3-(3-dimethyl  aminopropyl)  carbodiimide
hydrochloride  (EDC)  in  N-hydroxy-succinimide (NHS),
increase the stability of collagen from 77 °C to 88 °C
with crosslinked EDC/NHS and 80 °C with crosslinked
DHT.  This  can  occur  due  to  crosslinking  between
collagen and water content in EDC/NHS and EDC (23).
In applying collagen, you should pay attention to its
origin  because  it  dramatically  affects  the  thermal
properties  of  collagen.

Cellulose
Cellulose  is  a  very  hydrophilic  polymer,  but  this
property  is  also  influenced  by  the  crystallinity  level,

which ranges from 40 – 60% with a molecular weight of
127 kDa (42). The original nature of intramolecular that
form  hydrogen  bonds  also  influences  hydrophilicity.
Therefore,  many  cellulose  modifications  have  been
made  physically  or  chemically  to  improve  cellulose
deficiencies, one of which is making esters derivatives
(43).  Something  that  needs  to  be  considered  when
applying cellulose as a polymer in active substances is
that  thermal  stability  depends  on  molecular  weight
because  cellulose  is  complex;  the  level  of  cellulose
used; and environmental humidity (44).

The  application  of  cellulose  in  pharmaceutical
technology is to increase the amorphous stability of
active  substances.  Applied  ester  derivatives  from
cellulose,  namely  hydroxy  propyl  cellulose  (HPC),
increased the stability of quinine. However, the study
did not report the thermal properties of HPC (44). The
results obtained from HME of each quinine and quinine
hydrochloride  using  HPC  as  polymers  produced
different Tg. The greater the concentration is used, the
greater Tg will be. Besides, Tg is also influenced by the
type  of  active  substance,  although  it  does  not
experience  a  significant  difference.  For  example,  5%
quinine with Tg of 38.11 ± 1.59 °C is different from 5%
quinine hydrochloride with Tg of 39.84 ± 0.71 °C (44).
These results are supported by Costanzo et al. (18),
who reported the thermal properties of HPC having Tm
48 °C. It  can be said that HPC is thermolabile.  The
thermal properties of HPC are not much different from
when HPC was applied in a solid dispersion system.

Gelatin
Just like collagen, gelatin is also composed of amino
acids.  However,  gelatin  has  limitations,  which  as
having a low melting point of around 35 °C (45). At a
temperature  of  100  –  300  °C,  gelatin  has  been
degraded due to breaking peptide bonds on the amino
acid structure (46).

Therefore,  several  attempts  have  been  made  to
improve the stability of gelatin, such as formation with
genipin  as  crosslinked  to  experience  endothermic
events at a temperature of 61 – 65 °C because the
molecular weight increases to achieve thermodynamic
balance  (26).  The  addition  of  honey  affects  the  Tm of
gelatin  which  is  more  stable  by  increasing  honey
concentration. 85% honey with Tm 54.9 °C (24) and
structural  modification  to  50PS  gelatin  with  better
physical quality has a molecular weight of 54 kDa and
an isoelectric point of 8.5 with Tg of 145.2 °C (25). It is
expected to obtain better gelatin stability to be applied
as a polymer with the modification.

Pectin
The structure of pectin consists of  three main parts
(47).  However,  several  factors  will  affect  the
physicochemical properties of the pectin, such as ionic
strength,  solvents,  and  pH  (27).  In  addition,  the
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temperature can affect the stability and decomposition
of pectin.  Pectin experienced endothermic events at
105.64 – 113.81 °C (27).  Low thermal temperatures
can be caused by the amorphous form of the pectin

molecule. Adding other materials, such as boron nitride
nanosheets (BNNSs) which are crystalline, can increase
the temperature of pectin decomposition and residue
% by preventing evaporation (28).

Table 2. Thermal behavior of synthetic polymers.

Polymer Thermal
analysis

Polymer thermal behavior Polymer characteristic Ref.

Polyanhydrides DSC Tg: 83 – 106 °C Poly(cyclic)anhydride is formed at 60 °C in
two hours reaction. Polymerization using
propylene oxide increases the glass transition
temperature.

(53)

TGA Td: 286 – 331 °C

Storage
stability
analysis

The protective antigen is
stable in storage at 40 °C
and -20 °C

Sebacic acid anhydride increases the stability
of protective antigens both at storage
temperatures of 40 °C and -20 °C.

(54)

TGA &
DCS

Tg: 56.5 – 264.16 °C A mixture of epoxy resin and polyanhydride
produces a more stable polymer by
maintaining a 21 – 48% residue at 700 °C.

(55)
Td:150 – 200 °C
WL: 3%

Poly(l-lactide-co-e-caprolactone)
[P(LLA-CL)]

DSC Tg: 145 – 146 °C The physical stability (melting point) of
polycaprolactone is better than polyglycolide
and polylactide.

(56)
Tm: 159.74 ± 0.64 °C
ΔH: 26.31 ± 0.58 J/g

Polyesteramides TGA Td: 337 – 385 °C New aromatic polyester amides show an
increase in storage modulus at temperatures
of -50oC – 50 °C. The modulus storage value
of this polymer differs depending on the
rigidity of the meta-rings chain structure.

(57)
DSC WL1: 5%

Td: 370 – 410 °C
WL2: 10%
Tg:190 – 220 °C

TGA Td: 120 – 280 °C The reaction of polyester synthesis using citric
acid and mannitol occurs at temperatures of
150 °C and 170 °C. In contrast, the synthesis
reaction of polyamide occurs at temperatures
of 100 and 110 °C. The higher the
temperature used, the faster the synthesis
reaction will be.

(58)
DSC WL: 43.762%

Tg (polyester):
22.95 °C
Tm (polyester): 133.83 °C
 
Tg (Polyamide):
5.36 °C
Tm (polyamide): 218.34 °C

DSC Tg: -72 – (-23) °C Copolymers exhibit a multiphase (crystalline,
amorphous physical structure)

(59)
Tm: -5 – 4 °C

DSC Tdeg: 510 °C New polymers from amides and imides with
high stability

(60)
WL: 5%

DMTA Tg: 340 °C Changes in optical rotation cause steric
obstruction

(61)

TGA Td: 99.7 °C Breaking bonds between amide monomers
(de-esterification)

(62, 63)
DSC WL:10.3%

Tg: -63 – 1 °C
DSC Td: 193 °C Changes in the melting point increase the

percentage of mass loss
(64)

WL: 5 – 10%
Polyglycolic acid TGA Tm: 220 – 230 °C PGA of low thermal stability close to the Tm (65)

DSC Td: 240 °C
WL: 23.3%

Polylactic acid DSC Td: 352.5 °C The degradation temperature of poly
(ethylene terephthalate) is decreased from
435 to 352.5 °C at 50% Polylactic Acid levels.

(66)

TGA Tg: 50 – 80 oC Changes in structure from crystalline into
amorphous

(67)
DSC Tm :130 – 180 oC
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Poly(glycolide-co-lactide) (PLGA) TGA Td: 220 oC Polylactides acid (PLA) and Polyglycolic acid
(PLG)

(68)
DSC WL: 5%

Poly(p-dioxanone) (PPDO) DSC Tg: 25 oC PPDO thermal stability is affected by the
molecular weight

(69)
Tm: 110 oC
Td: 200 oC
MW: 3 – 4%

TGA T5%: 240.4 oC The carboxyl and hydroxyl groups in the PPDO
are decomposed.

(70)
T20%: 267.2 oC
T50%: 282.3 oC
Tmax: 279.5 oC
T70%: 287.8 oC

Starch
The  second  abundant  and  w ide ly  app l ied
polysaccharide  is  starch.  Even  slight  differences  in
amylopectin  can affect  functional  properties,  including
thermal properties (48). Heated starch loses its water
and  changes  into  a  granular  structure  (49).  This
structure plays a role in determining the crystallinity of
starch. Type I starch has an amorphous form with Tm
of 60 °C, while type II has a semicrystalline form with
Tm of 90 °C (30). In addition, the nature of thermal
starch  is  also  influenced  by  its  origin,  such  as  endset
starch,  which  experiences  endothermic  events  at  a
temperature of  61.8 –  71.7 °C (50).  Unlike the rice
starch,  the  Tm  occurs  at  85  °C  due  to  decreased
granular crystal interactions (51). Based on this, if you
want to use starch as a polymer, you should pay more
attention  to  its  origin  because  it  heavily  affects
physicochemical  properties.

Synthetic Polymers
Synthetic polymers are generally synthesized polyester
and  aliphatic  (4).  Generally,  synthetic  polymers  are
oxidative,  resistant  to  hydrolytic,  and  have  higher
degradation  mechanisms  than  natural  biopolymers
(52). To understand these differences, this section will
discuss synthetic polymers' thermal properties, which
can be seen in Table 2.

Polyanhydrides
Polyanhydrides  are  biodegradable  surface-eroding
polymers.  Polyanhydrides  are  synthesized  through
dehydration  from  diacid  molecules  using  the  melt
polycondensation  method.  The  body  can  metabolize
and  eliminate  polyanhydrides  into  non-toxic  diacid
monomers  (71).  The  mixture  of  epoxy  resin  with
bisamic  acid  from  anhydrides  produces  stable
polymers  up  to  150  –  200  °C.  The  degree  of  the
stability  of  epoxy  resins  against  degradation  by
temperature depends on the type of anhydrides used
(55).  Mixing  cyclic  anhydrides  with  propylene  oxide
produce  poly  (cyclic-anhydride)  which  has  a
degradation  temperature  above  300  °C.  The  more
propylene oxide used, the greater the molecular weight
and  the  higher  the  Tg  of  the  formed  poly  (cyclic-
anhydride) (53).

One  of  the  uses  of  polyanhydrides  in  the
pharmaceutical industry is to increase the stability of
protective antigen proteins. Generally, proteins will be
degraded in hot and cold temperatures.  However,  a
mixture of protective antigens with polyanhydrides can
survive  degradation  against  thermal  influences  at  40
°C  and  -20  °C  (54).

Polycaprolactone
Polycaprolactone  (PCL),  with  molecular  weights  of
10.000 g/mol, is a polymer with suitable viscosity and
rheology for excellent drug delivery (72). It is aliphatic,
mostly semicrystalline shaped (73). In its application,
PCL  is  often  developed  in  artificial  bone  implants
because of its good dissolution tendency, exceptional
biocompatibility, and low Tm (59 – 64 °C) (74). When
applied, the PCL concentration also affects the Tg. The
higher the concentration, the higher the Tg. In addition
to  TG,  the  other  thermal  properties  that  can  be
analyzed,  namely  Tc,  occur  at  36  °  C  (75).  At  a
temperature of 56.7 °C crystallinity value is 47% (72).

Polyesteramides
Polyesteramides  can  be  synthesized  through
polycondensation  or  ring-opening  polymerization
reactions using adipic and succinic acid as the basis for
producing  Poly  (ethylene  adipate)  (PEA)  and  Poly
(ethylene succinate) (PES). One of the properties of the
polymers is their expansion properties in mixtures with
solvents.  This  expanding  power  is  influenced  by  the
degree of crosslinking, where the higher the degree,
the more swelling ability is obstructed. The increasing
degree of  crosslinking  also  correlates  with  the  high
value  of  modulus  storage.  Aromatic  polyesteramide
compounds have increasing modulus storage values at
-50 °C up to 50 °C. The cold crystallization process
might cause this. At temperatures below -100 oC, the
difference  in  the  storage  value  of  modulus.  Aromatic
polyesteramide polymers are influenced by the degree
of rigidity of the meta-rings structure (57). DSC studies
on  all  mixed  comparisons  between  polyesteramides
and  resins  did  not  show  a  good  thermogram.  This
might be caused by a fast curing reaction (55).
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Polyglycolic Acid (PGA)
PGA  is  one  of  the  earliest  polymers  developed  for
medical purposes (76). PGA rods and screws in fracture
treatment  do  not  show  any  side  effects  (77,  78).  One
aliphatic polymer polyester with a molecular weight of
2.000 – 42.000 g/mol with Tm 220 – 230 °C due to high
crystallinity levels ranged from 86%. This will affect the
thermal properties of PGA with Tg 44.8 °C (63, 79-81).
Degraded at 260 – 320 °C with WL by 50% (65, 80).
However,  the  thermal  properties  of  PGA  are  also
influenced  by  environmental  conditions  due  to  its
hygroscopic  nature.

Polylactic Acid (PLA)
PLA is  a  synthetic  polymer  composed of  lactic  acid
monomers but does not contain a benzene ring is also
one of the polymers of polyester aliphatic used in the
biomedical  (82,  83).  Chemical  composition  and
molecular  structure  cause  the  PLA's  low  thermal
stability (84). Tg occurs at 60 °C, 124 °C, and 153 °C
(85). The decrease in temperature degradation of PET
is due to the shallow stability of the PLA. However, in
the mixture of the two polymers, the stability of PLA
increases because the degradation temperature of PET
is higher (66). In addition, the addition of elastomers
can  improve  the  thermal  stability  of  PLA  (86).  The
mixing  concentration  also  affects  the  thermal
properties  of  PLA.

Poly(p-dioxanone) (PPDO)
PPDO  is  also  one  of  the  polymers  of  biomedical
candidates  (87).  Molecular  weight  also  affects  this
polymer's  thermal,  mechanical,  and  rheological
properties.  To  obtain  the  desired  thermal,  the
molecular  weight  must  be controlled (88).  However,
low  crystallinity  levels  lead  to  the  shallow  thermal
stability of PPDO (89). The crystals contained in PPDO
are  formed  from  the  melting  into  five  spherulites
different  from  the  crystal  isothermal  at  60  °C.
Therefore,  one  of  the  ingredients  to  improve  the
thermal  stability  of  PPDO by adding polycarbodicide
(70).

Conclusion
A  natural  and  synthetic  polymer  has  been  widely
applied  in  pharmaceutical  technology.  Both
biopolymers  and  synthetic  polymers  have  different
thermal  characteristics.  Understanding  the
physicochemical  aspects,  especially  factors  affecting
the thermal properties, namely molecular weight and
origin, it  is worth noting to determine the polymer's
application and interaction with active pharmaceutical
ingredients.  Its  methods and treatment,  distribution,
and storage maintain stability and quality.
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