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Abstract: Various species belonging to the genus Curcuma are widely utilised in
Asian cuisine and medicine. Among the various Curcuma species, Curcuma longa
has well-established therapeutic and antioxidant effects. This study evaluated and
compared the antioxidant and antiradical properties of four Curcuma species
commonly used in India. The methanolic extracts were tested for DPPH radical
scavenging activity, total phenolic content, total flavonoid content, total
antioxidant activity (phosphomolybdenum method and beta-carotene linoleate
model), hydrogen peroxide scavenging, reducing power, and metal chelating
ability using various in vitro assays. According to the study, Curcuma zedoaria has
the strongest antioxidant capacity, whereas Curcuma amada has a high total
flavonoid concentration and metal chelating ability. When tested using the
phosphomolybdenum technique, Curcuma malabarica had the highest value for

Reducing power, Zingiberaceae. antioxidant activity.

Introduction

Reactive Oxygen Species can damage proteins and DNA and
are known to be implicated in the process of ageing, cancer,
diabetes, and atherosclerosis (1-3). Antioxidants found in
herbs, fruits, as well as vegetables are known to limit the
start and spread of oxidising chain reactions by scavenging
the free radicals (4, 5). Many medicinal plants have been
useful in traditional medicine, and they are regarded as good
sources of natural antioxidants (6). Due to the harmful
effects, including potential carcinogenicity (7), of some
synthetic antioxidants on human enzymes, researchers are
interested in finding safer natural antioxidants from plants
for medical use. Several in vitro methods are available for
assessing the radical scavenging capacities, serving as
useful tools for evaluating the antioxidant activity of various
compounds. These methods can provide valuable insights
into the effectiveness of antioxidants and contribute to
advancements in this field.

Many of the plants belonging to the Zingiberaceae family
have been utilized as spices in culinary traditions and
traditional medicine around the world. This extensive family
of rhizomatous plants originated in Asia and the Far East and
has been cultivated for millennia. It represents a vital natural
resource, offering a wide array of products, including food,
spices, medicines, dyes, and perfumes.

Curcuma is a significant genus within the Zingiberaceae
family, with some of the most extensively researched
species including Curcuma longa, Curcuma aromatica,
Curcuma zedoaria, Curcuma aeruginosa, Curcuma
xanthorrhiza, and Curcuma comosa. These species are
known to produce compounds that exhibit both antioxidant

properties and various other biological effects. Additionally,
Curcuma amada, Curcuma ecalcarata, and Curcuma
malabarica are three more species utilized for medicinal
purposes or as food in India and other Southeast Asian
countries.

C. amada is a direct food component, although the
starches of C. ecalcarata and C. malabarica are widely
utilised. C. amada , which thrives extensively in South India,
is commonly known as “mango ginger”. It features light to
pale yellow rhizomes that bear a taste reminiscent of fresh
mango (8). The primary compounds contributing to this
mango-like flavor are cis-ocimene and delta-3-carene, both
of which are present in the essential oil derived from its
rhizomes (9). In traditional medicine, C. amada rhizomes are
effectively utilized for treating sprains, contusions, and
digestive issues. Research conducted on Albino rats clearly
demonstrates that the ethanol extract of these rhizomes
possesses significant anti-inflammatory properties (10).
Furthermore, the phytochemistry of the rhizomes has been
well-documented, confirming their medicinal potential
(11-14).

C. ecalcarata, indigenous to Kerala, is utilized for its small
yellow rhizomes, which are processed to produce starch (15,
16). The phytochemical composition of C. ecalcarata has
been documented in existing literature (17). C.
malabarica features blue-white flesh and emits a camphor-
like fragrance (18). Its cooling and soothing properties make
it a popular source of starch in meals across South India,
especially for newborns and convalescents (19). Reports
have highlighted the antimicrobial properties of its extracts
(20) along with its phytoconstituents (21).
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The yellowish rhizomes of C. zedoaria are characterised
by their aromatic, bitter, and strong scent. The plant is used
to treat conditions such as piles, bronchitis, asthma, and
tumours, and also it serves as an antipyretic (8).
Furthermore, C. zedoaria starch is believed to have
therapeutic properties (22). While the phytochemical
components of C. zedoaria rhizomes have been discovered
(23), there have only been initial investigations on their
antioxidant activities (24).

Although the antioxidant activity of C. longa is well-
established and some early research on C. zedoaria is
known, the antioxidant capacities of the other three, which
are widely utilised in food items, have not been
comparatively assessed. A comparison of the different
species is essential for identifying their potential and
enabling their utilisation as functional foods, in dietary
supplements and pharmaceuticals. Therefore, utilising a
variety of in vitro models, the current work had been set out
to assess and compare the antioxidant activity of methanol
extracts of C. amada, C. ecalcarata, C. malabarica, and C.
zedoaria.

Experimental Section

Materials

Tween 20 (pharmaceutical grade, Merck, Germany);
butylated hydroxyanisole (BHA; analytical grade, Sigma-
Aldrich, USA); linoleic acid (analytical grade, Sigma-Aldrich,
USA); ferrozine (=97% purity, Sigma-Aldrich, USA); B-
carotene (analytical grade, Sigma-Aldrich, USA); 1,1-
diphenyl-2-picrylhydrazyl (DPPH) free radical (analytical
grade, Sigma-Aldrich, USA); Folin-Ciocalteu’s reagent
(Sigma-Aldrich, USA); hydrogen peroxide (30% w/v,
analytical grade, Merck, Germany); potassium ferricyanide
(analytical grade, Merck, Germany); ammonium molybdate
(analytical grade, Merck, Germany); ferrous chloride (FeClz,
analytical grade, Merck, Germany); and ferric chloride (FeCls,
analytical grade, Merck, Germany) were used in this study.

Extraction

Rhizomes of C. amada (CA), C. ecalcarata (CE), C. malabarica
(CM), and C. zedoaria (CZ) were sourced from medicinal
plant producers in Kottayam District, Kerala. The rhizomes
were cut, dried, and pulverized. Each 50 g of powdered
rhizomes was extracted with methanol (2 x 200 mL) at room
temperature for 48 h to obtain the crude extracts after
solvent removal. These were then diluted with methanol to
prepare different sample concentrations for antioxidant
activity studies (25).

Free Radical Scavenging Activity

The free radical scavenging was evaluated as per the
standard procedure in literature (26-28). To put it briefly,
DPPH was combined with sample solution at various
concentrations and absorbance was measured at 515 nm
after the reaction mixture had been well agitated and kept in
the dark. A reduction in the absorbance of the DPPH radical
was used to assess the sample's ability to scavenge free
radicals. BHA served as a benchmark.

Total Phenolic Content and Total Flavonoid
Content

To assess the total phenolic content of the methanol extracts
of the three rhizomes Folin Ciocalteau's phenol reagent was
utilised (29, 30). The reagent was combined with suitably

diluted samples, and the mixture was kept for 5 min. The
absorbance at 760 nm was then measured against a reagent
blank after adding sodium carbonate and again incubated at
room temperature for two h. Gram gallic acid equivalents per
100 g extract was used to express the results.

The Woisky et al. technique was used to calculate the
total flavonoid content (31). In short, a flavonoid-aluminum
complex was formed by reacting aluminium chloride solution
with 1 mL of suitably diluted sample, which was then kept for
5 min. Then sodium hydroxide solution was added at the
sixth min, and then thoroughly mixed again and its
absorbance was measured at 415 nm against a blank after
30 min at room temperature. For the blank, distilled water
was used instead of AICl;. Gram quercetin equivalents per
100 g of extract were used to represent the overall flavonoid
concentration.

Total Antioxidant Activity by
Phosphomolybdenum Reagent

Using Prieto et al.'s approach, the formation of
phosphomolybdenum complex was used to measure the
overall antioxidant activity (32, 33). Briefly, the reagent
solution consisting of H,5S0,, ammonium molybdate and
sodium phosphate were mixed with sample. After incubating
at 95 °C in a water bath for around one and half h, the
absorbance was measured at 695 nm against the blank.
Gram ascorbic acid equivalents per 100 g extract were used
to express the antioxidant activity.

Scavenging of Hydrogen Peroxide

Using the Ruch et al.’s approach, the capacity of methanol
extracts to scavenge hydrogen peroxide was calculated (34).
H,0, (20 mM) was made into a solution in phosphate buffer
of pH 7.4. Spectrophotometric measurement of H,0,
concentration at 230 nm was performed using a molar
extinction value 81 M'cm™. As per the standard procedure,
required amount of H,0, in phosphate buffer was combined
with extracts at different concentrations, and the mixture
was left for 10 min. The absorbance of reaction mixtures at
230 nm was measured against a blank solution that
comprised sample and phosphate buffer without H,0, in
order to determine the quantity of H,0,. The reference
utilised was BHA. The percentage of H,0, scavenging in the
sample was calculated.

Reducing Power

The Oyaizu technique was used to determine the reducing
power of methanol extracts (35). Potassium ferricyanide and
phosphate buffer were combined with varying quantities of
the sample in distilled water. For 20 min, the mixtures were
incubated at 50 °C. After adding trichloroacetic acid to the
sample solutions, they were centrifuged for ten min. Then,
ferric chloride was added to the supernatant solution, and
the absorbance at 700 nm was measured. Greater reducing
power was shown by the reaction mixture's higher
absorbance.

Beta-carotene - Linoleate Model

Using BHA as a standard, the antioxidant activity of
methanol extracts was assessed using Hidalgo's (36) beta-
carotene bleaching technique. Linoleic acid, tween 20, and
beta-carotene were placed in a flask with a round bottom.
Then chloroform was removed, the resultant emulsion was
added to the sample. After measuring the absorbance, the
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Ln(

60

Equation 1 | where DR = degradation rate, a is the initial
absorbance at 470 nm, and b is the absorbance at 60 min.

3

DR =

DRcontrol - DRsample
DRcontrol

AA = x 100%

Equation 2 | AA = antioxidant activity (%).

mixture was placed in a water bath (50 °C). The absorbance
was again read at the 60th minute. Equation 1 was used to
calculate the degradation rate. Antioxidant activity was then
expressed as the percentage of inhibition relative to the
control using Equation 2.

Metal Chelating Ability

Dinis et al.'s (37) approach was used to test the capacity of
the methanol extracts to chelate ferrous ions. To summarise,
sample of varied concentrations in methanol was treated
with ferrous chloride followed by addition of ferrozine. After
ten min, the absorbance was measured against a blank at
562 nm.

Statistical Analysis

All the experimental results are expressed as mean *
standard deviation (SD) of triplicate measurements. The
results were processed using Microsoft Excel and Origin. A p
value of <0.05 had been considered to be statistically
significant.

Results and Discussion
Among the four different species of Curcuma rhizomes, the
percentage yield of the extracts was obtained to be 7.24 %
for C. amada, 6.98 % for C. malabarica, 6.13 % for C.
ecalcarata and 8.32 % for C. zedoaria.

Assessing antioxidant activity of phytochemicals using a
single technique in plant extracts is challenging because of
the complex structure of the phytochemicals in them. As a
result, several assays are employed for the assessment.

DPPH radical has been frequently utilised to assess the
capacity of different natural products to scavenge free
radicals (26). In order to provide a stable end product that
prevents additional oxidation of the lipid, the antioxidants
donate a H-atom from the phenolic OH-groups thereby
stopping the free radical chain of oxidation (38). In

comparison to other approaches, this approach requires a
very short time. A persistent organic nitrogen radical, DPPH
exhibits a UV lambda max of 515 nm in methanol. Since the
change of colour is from purple to light yellow following
reduction, a spectrophotometer may be used to track the
progress of the reaction (39).

The reduction in absorbance corresponds to the
concentration and antioxidant activity of the investigated
samples. The EC,, value which is presented in Table 1 was
calculated from the graph which plotted percentage of
scavenging activity against extract concentration. The
efficiency of antioxidant capability is inversely proportional
to their EC;, values. The results obtained (Figure 1) show
that the radical scavenging activity is much lower than the
synthetic antioxidant BHA; however, when the four Curcuma
species were compared, CZ (EC.,: 2.38 = 0.06 g/L) was
determined to be a more effective radical scavenger than CM
(ECso: 5.08 £ 0.05 g/L), CA (EC,y: 5.57 = 0.16 g/L), and CE
(ECso: 6.95 + 0.17 g/L).

The Folin-Ciocalteau technique was used to determine
the total phenolic content. A coloured product with a lambda
max at 750 nm is produced when phenols are subjected to
oxidation using a molybdotungstate reagent. According to
the results, which were reported as g gallic acid equivalents
per 100 g extract, CZ had a greater phenolic content than
CA, CE, and CM. An estimated 7.33 + 0.42 g, 7.79 £ 0.11 g,
8.77 £ 0.27 g, and 16.07 £ 0.30 g gallic acid equivalents
were the total phenolic content of each 100 g of dried
extracts of CA, CE, CM and CZ, respectively.

Aluminium chloride reagent quantified the total flavonoid
content. It was calculated and presented as equivalents of
quercetin. An estimated 5.96 = 0.41 g, 3.49 = 0.13 g, 5.28 =
0.07 g, and 0.24 = 0.01 g of quercetin equivalents were
found in each 100 g of dried extracts of CA, CE, CM, and CZ.
The data demonstrated that all four species had relatively
low levels of flavonoids.

Table 1 displays the antioxidant activity of CA, CE, CM,
and CZ methanol extracts at various doses. The green Mo (V)
complex, which has a maximum absorbance at 695 nm, is
formed when antioxidants reduce Mo (VI) to Mo (V) (32). This
process is the basis of the phosphomolybdenum technique
wherein the antioxidants contribute a hydrogen atom.

Gram ascorbic acid equivalents per 100 g of extract
expressed the antioxidant activity. The results were
suggestive that CM had higher antioxidant activity (47.94 +
1.98 g AAE/100 g extract) than CZ (41.55 = 1.19 g AAE/100
g extract), followed by CA (32.94 + 0.54 g AAE/100 g
extract) and CE (30.71 = 2.10 g AAE/100 g extract).

Hydrogen peroxide which is an unstable metabolic
product, is the source of singlet oxygen and hydroxyl
radicals. These are produced by the Fenton reaction which

Table 1. Scavenging of DPPH radical, TPC, TFC and total AA of the rhizomes of C. amada, C. ecalcarata, C. malabarica, and C.

zedoaria.

Extract Scavenging of DPPH Total phenolic Total flavonoid Total antioxidant
radical (EC, (g/L)) content® (g/100 g) content® (g/100 g) activity® (g/100 g)

C. amada 5.57 £ 0.16 7.33+£0.42 5.96 + 0.41 32.94 + 0.54

C. ecalcarata 6.95 + 0.17 7.79 £ 0.11 3.49 £ 0.13 30.71 = 2.10

C. malabarica 5.08 £ 0.05 8.77 £ 0.27 5.28 £ 0.07 47.94 +1.98

C. zedoaria 2.38 £ 0.06 16.07 = 0.30 0.24 £ 0.01 41.55 +1.19

Note: °Expressed as gram of gallic acid equivalents per 100 g extract, "Expressed as gram of quercetin equivalents per 100 g
extract, and “Expressed as gram of ascorbic acid equivalents per 100 g extract.
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Figure 1. DPPH scavenging percentage of Curcuma extracts. CA =

Curcuma amada, CE = Curcuma ecalcarata, CM = Curcuma malabarica,
and CZ = Curcuma zedoaria.
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Figure 2. Percentage scavenging of hydrogen peroxide of extracts at
various concentrations. CA = Curcuma amada, CE = Curcuma ecalcarata,

CM = Curcuma malabarica, CZ = Curcuma zedoaria, and BHA = butylated
hydroxyl anisole.
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Figure 3. Reducing power of extracts at various concentrations. CA =

Curcuma amada, CE = Curcuma ecalcarata, CM = Curcuma malabarica,
CZ = Curcuma zedoaria, and BHA = butylated hydroxyl anisole.

thereby start lipid peroxidation, and are harmful to cells.
Reactive oxygen species and hydrogen peroxide can harm a
number of cellular constituents. Therefore, hydrogen
peroxide elimination is crucial for the antioxidant defence of
cells (40). All four extracts scavenged the hydrogen peroxide
radical according to their dosages, as illustrated in Figure 2.
The EC,, value of CZ (EC.,: 0.51 = 0.01 g/L) was found to be
superior than CM (EC,,: 0.92 = 0.001 g/L) and CA (EC,,: 0.94
+ 0.002 g/L), and it was almost equivalent to that of BHA
(ECso: 0.47 £ 0.01 g/L). Since the EC;, value for CE could not
be ascertained, it was identified to be a very poor hydrogen

peroxide scavenger. BHA > CZ > CM > CA > CE was the
order of the percentage of hydrogen peroxide scavenging.

Compounds which are associated with reducing
properties show antioxidant activity by the donation of a H-
atom to interrupt the chain of free radicals. Such species,
reduces Fe**/Ferricyanide complex to the Fe’* form in this
assay. Perl's Prussian blue colour production at 700 nm can
be used to track this process (41). The information obtained
showed that CZ was a better reductant than CA, CE, and CM.
The increased absorbance at 700 nm was found to vary with
dosage. The findings are displayed in Figure 3. At
concentrations between 0.2 and 0.8 g/L, the reducing power
was in the following order: CZ > CM > CA > CE.

Using an aqueous emulsion system heat-induced
oxidation can be used as a test for antioxidant activity.
Linoleic acid together with beta-carotene can be used for the
assay. When the antioxidant is absent, beta-carotene quickly
discolours (42). The free radicals generated within the
system are neutralised by a phenolic antioxidant, which
minimises the amount of beta-carotene degradation. BHA
was employed as a standard in this experiment. Figure 4
displays the results of stronger antioxidant activity of CZ
(99.2 + 4.7 %) at a concentration of 0.2 mg of sample
compared to BHA (91.8 = 4.0 %), CA (44.3 + 4.9 %), CE
(50.4 £ 4.1 %), and CM (63.7 + 4.6 %). Most remarkably, CZ
was shown to neutralise the free radicals in the system and
prevent a-carotene from bleaching, suggesting that the
methanol extract of CZ contained more antioxidants.

Of the several types of metal ions, the Fe’* ion is the
most potent pro-oxidant. Transition metals are recognised to
initiate and propagate lipid peroxidation. By stabilising
transition metals, chelating compounds can prevent lipid
oxidation (43). In this assay, ferrozine can combine with Fe**
to form complexes. The red colour of the complex reduces
when additional chelating agents are present because they
interfere with the formation of the complex. There is a dose-
dependent linear reduction in the absorbance of the
ferrozine-Fe’* complex. The extract can minimise the

mCA sCM mCE mCZ mBHA
100 -

80 -

60 -

Antioxidant activity (%)

20 4

0.2 mg concentration

Figure 4. Percentage antioxidant activity of extracts at 0.2 mg
concentration. CA = Curcuma amada, CE = Curcuma ecalcarata, CM =
Curcuma malabarica, CZ = Curcuma zedoaria, and BHA = butylated
hydroxyl anisole.
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Figure 5. Percentage of metal chelation of extracts at various
concentrations. CA = Curcuma amada, CE = Curcuma ecalcarata, CM =
Curcuma malabarica, and CZ = Curcuma zedoaria.

superoxide-driven Fenton reaction which is the primary
pathway to the production of active oxygen species, by
lowering the concentration of the transition metal if it
chelates with Fe**. Figure 5 illustrates how the three
extracts (CA, CE, and CZ) disrupted the formation of the
ferrous as well as ferrozine complex in this test. This
confirms that the extracts have chelating activity and can
bind to ferrous ions, which means they may be employed as
an efficient treatment to slow down Fe*-catalyzed lipid
oxidation. It was discovered that CM was a poor metal
chelator. Chelation occurs in the following order: CA > CE =
CZ > CM since the EC,, value of CA (EC,: 0.64 £+ 0.017 g/L)
was greater than CE (EC,,: 1.44 + 0.012 g/L) and CZ (EC,,:
1.44 + 0.020 g/L), and CM (EC,,: 4.88 = 0.024 g/L).

Conclusion

The antioxidant capacity of the extracts of four Curcuma
species was assessed and compared in this study using a
variety of in vitro assay techniques. The current study
provides information on the antioxidant capacity of methanol
extracts of the four culinary and medicinal species of the
genus Curcuma. According to the study, C. zedoaria has
strong antioxidant activity, particularly because of its high
phenolic content, reducing power, and ability to effectively
scavenge DPPH radicals. Furthermore, C. zedoaria extract
has a similar capacity to scavenge hydrogen peroxide as
synthetic antioxidant BHA, and it prevents beta-carotene
bleaching more efficiently. This study also demonstrates that
C. amada, which is directly utilised in food preparation, has
strong metal chelating activity and a high total flavonoid
concentration. In some experiments, C. malabarica extract
outperforms C. zedoaria extract and also shows strong
antioxidant capabilities. Among the various species, it has
the greatest antioxidant activity value when measured using
the phosphomolybdenum technique. It was confirmed that C.
zedoaria and C. ecalcarata extracts were equally efficient in
metal chelation. This study concludes that all four Curcuma
species have antioxidant properties useful for the
preparation of pharmacological and nutraceutical products
which helps to reduce oxidative cell damage and improve
health. Ongoing in vitro studies will confirm their potential
health benefits.
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