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Abstract: Mangrove ecosystems, distributed across tropical and subtropical
coastlines, are globally recognized for their exceptional biodiversity and
multifunctional ecological roles. They sustain coastal fisheries by serving as
breeding and nursery habitats, support diverse terrestrial and aquatic fauna,
enhance shoreline stability through wave attenuation and erosion control, and
improve water quality via nutrient recycling and pollutant filtration. Mangroves are
also among the most efficient blue carbon sinks, contributing significantly to
climate-change mitigation. From a socio-economic perspective, they provide
timber and non-timber resources, support artisanal fisheries, enable ecotourism-
based livelihoods, and hold high potential for carbon-credit revenue and
bioprospecting. The review synthesizes evidence from 135 studies published
between 1990 and 2024, retrieved from Web of Science, Scopus, Google Scholar,
and institutional repositories, based on their relevance to mangrove ecology,
ecosystem services, and community-level economic benefits. Only peer-reviewed
articles, technical reports, and case studies with clear methodological descriptions
were included. The synthesis reveals that the ecological and economic functions of
mangroves are strongly interdependent, with degradation of habitat quality
directly reducing fisheries productivity, carbon storage efficiency, and livelihood
security. The review highlights the urgent need for integrated management
approaches, including hydrological restoration, community-based conservation,
and policy-supported payment-for-ecosystem-services mechanisms, to enhance

ecosystem resilience under accelerating anthropogenic and climate pressures.

Introduction

Mangroves are among the world’s most productive and
ecologically significant ecosystems. These salt-tolerant trees
and shrubs occupy intertidal zones of tropical and
subtropical coastlines, where they provide a wide array of
ecological and economic services despite covering only
about 0.1% of Earth’s land area (1, 2). Their structurally
complex habitats support exceptionally high biodiversity and
function as critical interfaces between terrestrial and marine
environments. By linking these systems, mangrove forests
facilitate species movement, nutrient exchange, and energy
flow, thereby contributing substantially to coastal ecological
integrity and human well-being (3, 4).

Ecologically, mangroves regulate climate by acting as
nursery habitats for aquatic fauna, stabilizing coastlines,
buffering storm surges, and storing large quantities of
atmospheric carbon (5, 6). Economically, they provide cost-
effective natural protection from coastal hazards while
supporting fisheries, timber and non-timber forest products,
and a variety of nature-based livelihoods. Despite these
benefits, mangroves are under increasing pressure from
multiple anthropogenic and climatic drivers. However, these

threats vary significantly across regions: shrimp aquaculture
and land conversion dominate losses in Southeast Asia,
coastal infrastructure expansion is a primary driver in South
Asia and West Africa, while accelerated subsidence and sea-
level rise disproportionately affect small island nations and
deltaic regions (9, 3). Understanding these spatial and
thematic variations is essential for effective conservation.
Although mangrove ecosystems have been widely
studied, current research reveals important knowledge gaps.
Existing literature is often regionally biased, with heavy
concentration in Southeast Asia, creating limited global
comparability. Considerable uncertainty persists regarding
key ecological processes such as the magnitude of detrital
outwelling, regional differences in carbon stock estimates,
and variation in restoration success under different
hydrological conditions. Similarly, economic assessments
lack standard valuation frameworks, limiting their integration
into policy instruments such as carbon markets, coastal
planning, and payment-for-ecosystem-services programs.
Given these gaps, this review aims to provide a
comprehensive, integrative synthesis of the ecological
functions and socio-economic significance of mangroves at a
global scale. Specifically, it aims to: 1) Compare ecological
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processes across different  biogeographic  regions,
highlighting convergences and divergences. 2) Critically
evaluate contrasting evidence-particularly in areas such as
carbon dynamics, outwelling, and hydrological resilience. 3)
Synthesize economic valuations of mangrove services,
including fisheries, NTFPs, ecotourism, carbon credits, and
emerging biotechnological applications. 4) Identify research
gaps and policy challenges relevant to conservation,
restoration, and climate adaptation.

By addressing these objectives, this review moves
beyond descriptive accounts to provide a structured,
evidence-based evaluation of mangrove ecosystem services,
emphasizing their importance for long-term environmental
stability, coastal resilience, and sustainable community
livelihoods.

Methodology

A comprehensive literature search was conducted between
January and July 2024 across Web of Science, Scopus,
ScienceDirect, Google Scholar, SpringerLink, and institutional
repositories such as FAO, UNEP and IUCN, using
combinations of keywords including “mangroves,”
“ecological functions,” “blue carbon,” “nursery habitats,”
“coastal protection,” “economic valuation,” “NTFPs,”
“ecotourism,” and “aquaculture impacts.” The search
covered studies published between 1990 and 2024. Articles
were included if they examined ecological or economic
aspects of mangrove ecosystems, presented original data or
validated analyses, described clear methodology, and were
available in English, whereas anecdotal reports, non-
reviewed sources, conference abstracts without full text, and
studies focused solely on unrelated wetland types were
excluded. A total of 312 records were identified, 72
duplicates were removed, and 230 full texts were screened;

312 of records identified
through database searching

Identification

ultimately, 135 studies fulfilled all inclusion criteria.
Extracted data were synthesized thematically and classified
into ecological and economic domains. Blue Carbon
frameworks to ensure structural consistency. The
methodology also explicitly acknowledges publication bias
(positive results being overrepresented), regional citation
bias heavily favouring Southeast Asia, and methodological
differences across studies (e.g., field plots vs. remote
sensing) that influence comparability. A PRISMA-style flow
diagram documenting identification, screening, eligibility
assessment, and inclusion steps was prepared for
transparency (10), as shown in Figure 1.

Ecological Significance
Mangrove ecosystems provide a wide array of essential
ecological services that underpin biodiversity, protect
coastlines, regulate water quality, and store significant
quantities of carbon. Their unique structural adaptations
such as aerial roots, pneumatophores, prop roots, dense
canopies, and high sediment-trapping capacity create
complex, layered habitats that support diverse terrestrial,
estuarine, and marine communities. As biodiversity hotspots,
mangroves offer critical breeding, feeding, and nursery
grounds for fish, crustaceans, birds, and other wildlife.
Globally, mangroves are regarded as some of the most
ecologically valuable habitats, functioning as natural buffers
that absorb wave energy, reduce storm impacts, and prevent
shoreline erosion. They also enhance water quality by
trapping sediments, immobilizing heavy metals, and filtering
pollutants before these reach open waters. Importantly,
mangroves serve as highly efficient carbon sinks, storing
large amounts of organic carbon in both biomass and
sediments, thereby contributing significantly to global
climate regulation, as shown in Figures 2 and 3.
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Figure 1. PRISMA flow diagram outlining the identification, screening, eligibility assessment, and inclusion of studies in this review.
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Figure 2. Diagram showing ecological significance of Mangroves.

Biodiversity Conservation

Mangrove forests function as vital biodiversity hotspots in
tropical and subtropical coastal regions, supporting
remarkable terrestrial and aquatic species diversity through
their unique structural complexity. Features such as dense
prop roots, pneumatophores, and stratified canopies create
multiple microhabitats that sustain rich and interconnected
ecological communities (3, 4, 11). One of the most critical
ecological functions of mangroves is their role as breeding,
nursery, and rearing grounds for a wide range of marine
organisms of both ecological and economic importance (3, 4,
11). Juvenile stages of numerous fishes, shrimps, crabs, and
mollusks depend on the protective structure of mangrove
roots for shelter, predator avoidance, and foraging,
significantly increasing their chances of survival (12, 13).
Empirical studies indicate that nearly 75% of commercially
harvested tropical fish species utilize mangrove habitats
during some phase of their life cycle, highlighting their
indispensable contribution to coastal fisheries productivity
(14, 15).

The structural complexity of mangrove habitats also
supports high shrimp productivity (16), including species of
major commercial value such as tiger prawns (Penaeus
monodon) and sea crabs (Scylla paramamosain), as well as
brackish-water fishes like barramundi (Lates calcarifer) and
Nile tilapia (Oreochromis niloticus) (17).

Mangroves provide essential habitats for a wide array of
resident and migratory bird species including herons, egrets,
kingfishers, storks, sea eagles, and ospreys serving as
nesting, roosting, and stopover sites along major coastal
flyways (18-20). Across biogeographical regions, between
150 and 250 bird species have been documented within
mangrove landscapes (21).

Beyond avifauna, mangroves sustain a diverse
assemblage of mammals (e.g., proboscis monkeys Nasalis
larvatus, fishing cats Prionailurus viverrinus), reptiles
(including crocodiles and snakes), and invertebrates such as
fiddler crabs and mangrove tree crabs that play crucial roles
in nutrient cycling (22, 23). Southeast Asia, recognized as
the global epicentre of mangrove biodiversity, exhibits

AR AT

Figure 3. Different ecological role of Mangroves.

particularly high species richness and endemism (4). For
example, Malaysia’'s approximately 9,000 hectares of
mangrove forests support extensive marine and estuarine
life, including seagrasses (Gracilaria spp.), algae, fungi, and
diverse fish communities, with species distributions
influenced by tidal dynamics and seasonal salinity patterns
(24). These ecosystems also enhance ecotourism potential,
notably illustrated by the famous firefly (Photuris
lucicrescens) congregations along the Kampung Kuantan
riverbanks in Malaysia (25). Toward temperate intertidal
zones, mangroves continue to support burrowing species
such as clams, mussels, fiddler crabs, and polychaetes (17).

Coastal Protection & Stabilization

Mangroves function as highly effective natural coastal
defence systems through a combination of hydrodynamic
and geomorphological mechanisms. Their dense vegetation
and complex root architectures exhibit strong wave-
attenuation capacity, reducing wave energy by 13-90% over
a 100-meter mangrove belt (26-28) and lowering storm-
surge heights by approximately 5-50 cm per kilometre of
forest width (29). These protective benefits were clearly
demonstrated during Hurricane Wilma (2005), when
mangroves in Florida reduced inland flooding by nearly 70%
(30), and following the 2004 Indian Ocean tsunami, during
which mangrove belts absorbed up to 70% of incoming wave
energy (31, 32).

Beyond wave reduction, mangrove root systems
significantly enhance shoreline stability by trapping
sediments and facilitating vertical accretion. They can retain
up to 80% of incoming sediments (33) and contribute to
long-term elevation gain through sediment accumulation
processes (34, 35). These functions are particularly critical in
erosion-prone zones such as Vietnam and Malaysia, where
coastal erosion can reach 50 m/year and currently affects
nearly 30% of shoreline segments (28, 36).

In addition to physical protection, mangroves provide
economically viable alternatives to engineered coastal
barriers. For instance, Philippine mangroves offer an
estimated USD 1.6 billion in annual storm-damage
prevention (6, 36). Their proven cost-effectiveness, coupled
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with demonstrated performance during extreme climatic
events (37), underscores the value of mangrove
conservation as a nature-based solution for enhancing
coastal resilience an increasingly urgent need as climate
change drives higher storm frequency and intensity (38).

Water Quality and Nutrient Cycling

Mangrove ecosystems play a crucial role in maintaining
coastal water quality through their ability to trap pollutants,
retain excess nutrients such as nitrogen and phosphorus,
and capture suspended solids from agricultural and urban
runoff. Their intricate root structures and sediment-binding
capacity significantly reduce turbidity and prevent
eutrophication in adjacent ecosystems, thereby protecting
sensitive habitats such as seagrass beds and coral reefs from
sedimentation and nutrient overload (39, 8). By stabilizing
sediments and minimizing water cloudiness, mangroves
enhance seagrass growth parameters including shoot
density, root length, and overall biomass while supporting
the health of nearby coral reef systems.

Mangroves also contribute substantially to regional
biogeochemical cycles and function as integral nodes in the
tropical coastal blue carbon network. These ecosystems
store large amounts of organic carbon in both biomass and
sediments, reinforcing the need for integrated conservation
approaches across interconnected mangrove-seagrass-coral
reef systems (41, 42, 44, 45).

The long-standing hypothesis that mangrove-derived
detritus supports offshore productivity has been revisited in
recent years. While traditional models emphasize strong
detrital “outwelling,” new mass-balance and tracer studies
suggest that export may be less extensive than previously
assumed. Dissolved organic matter appears to play a more
significant role than particulate detritus in fueling adjacent
food webs, and benthic communities show variable
dependence on mangrove-derived detrital inputs (46).

Microbial processes within mangrove soils further
enhance nutrient cycling. Microbial communities facilitate
nitrogen fixation, denitrification, and organic matter
decomposition, thereby increasing nutrient bioavailability,
supporting plant growth, and suppressing pathogenic
bacteria ultimately promoting higher biodiversity across the
ecosystem (47). Through these mechanisms, mangroves
function as effective nutrient processors, recycling excess
terrestrial inputs and preventing nutrient accumulation that
could otherwise trigger harmful algal blooms (48). Detritus
from leaf litter and organic debris forms the foundation of
complex food webs within and around mangrove ecosystems
(49).

Importantly, mangrove sediments act as sinks for heavy
metals and organic contaminants through adsorption and
plant uptake, providing a natural buffer against
anthropogenic pollution (50). This function is especially vital
in regions exposed to intense agricultural runoff, aquaculture
effluents, and wurban wastewater discharge, where
mangroves mitigate ecological degradation and help
maintain coastal water quality.

Carbon Stores

Mangrove forests span 105 countries, with Indonesia, Brazil,
Malaysia, and Papua New Guinea together holding nearly
half of the global mangrove area. These ecosystems are
among the most carbon-dense in the tropics, storing
substantially larger quantities of carbon per unit area than
most terrestrial forests, making them indispensable for

climate-change mitigation (51). Studies across Southeast
Asia particularly from Indonesia consistently report some of
the highest carbon stocks worldwide, with values commonly
ranging between 863-1073 Mg C ha~! in mature stands
supported by large trees and deep organic sediments (52).

A broader synthesis reveals a coherent pattern:
structurally complex, undisturbed mangroves function as
powerful long-term carbon sinks, with annual sequestration
rates often exceeding those of many tropical terrestrial
forests and capturing more than 2 tons of carbon per hectare
per year (53, 66). Quantifying these pools remains critical for
evaluating mangrove contributions to global ecosystem
services (7). More than 80% of this carbon typically resides
below ground, stored in sediments and dense root systems
(21, 7, 54). Soil carbon accumulation driven by litterfall,
woody debris, and slow decomposition is strongly modulated
by forest structure (tree height, basal area) and hydrological
conditions such as salinity and dissolved oxygen (54, 7).

Although intact mangroves act as efficient, long-term
carbon sinks, their degradation rapidly reverses this role.
Disturbance exposes deep anoxic sediments to oxygen,
accelerating decomposition and releasing substantial COz;
for instance, conversion of mangroves to pasture generates
emissions far higher than equivalent deforestation in the
Amazon (55). Nevertheless, remaining intact mangroves still
offset the majority of emissions from global mangrove loss
up to 94% (55).

Global assessments estimate that mangroves collectively
store approximately 21,896.56 Mt CO:-equivalent, with
2,817.23 Mt contained in above-ground biomass and
19,079.32 Mt within the top 1 m of soil (59, 60). National
inventories indicate that Indonesia holds the highest stock
(61). Soil carbon typically extends 0.5-3 m deep, accounting
for 49-98% of total ecosystem carbon (62).

Importantly, differences in reported values across studies
often reflect contrasting methodological approaches. Local
case studies such as plot-based measurements from
Indonesia use direct biomass sampling and sediment coring,
providing fine-scale, high-resolution estimates but limited
spatial coverage. In contrast, global carbon stock
assessments rely heavily on remote sensing, upscaled
biomass models, and harmonised datasets, which capture
large-scale patterns but may smooth out local heterogeneity.
Recognising these methodological differences helps
reconcile apparent variation in reported values and
underscores the need for integrative approaches combining
field data with remote-sensing products to improve regional
and global carbon accounting.

Economic Significance

Mangroves hold immense economic importance by
supporting fisheries, aquaculture, timber, fuelwood, and
honey production, which sustain the livings of millions of
coastal communities. They act as natural bio-shields,
minimizing the economic losses from floods and storms,
while simultaneously promoting ecotourism and offering
avenues for sustainable coastal development, as shown in
Figures 4 and 5.

Fisheries Support

Mangroves serve as vital nursery grounds for commercially
important fish and crustaceans, with their intricate root
systems providing shelter from predators and currents for
juvenile species (12, 63). Healthy mangrove forests directly
enhance fishery productivity, as evidenced by positive
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Figure 4. Different economic significances of Mangrove ecosystems.

correlations between mangrove presence and fish catch
rates in adjacent waters (64). This productivity is highest in
mangroves with robust growth, freshwater inputs, and intact
ecosystems, particularly along fringe habitats where fish
populations concentrate (65). The structural complexity of
roots, tidal channels, and pools further supports fisheries by
offering refuge and sustaining prey like bivalves (65).
Beyond nursery functions, mangroves sustain food webs
through organic matter export (e.g., detritus) to seagrass
beds and coral reefs, amplifying fishery yields (3). These
ecosystem services underpin artisanal and commercial
fisheries globally, supporting millions of livelihoods (6, 15).
However, mangrove loss from aquaculture, deforestation,
and urbanization has severely degraded fishery resources
(66). Notably, while fish catches peak near human
settlements where fishing effort and markets converge these
mangroves face heightened threats from pollution and
overfishing (65). Targeted conservation and sustainable
management of these vulnerable areas are essential for
securing both ecological integrity and long-term economic
benefits.

Timber and Non-Timber Forest Products (NTFPs)

Mangrove forests ecosystem serve as vital reservoirs of both
timber and non-timber forest products (NTFPs), supporting
coastal communities through diverse economic and
medicinal resources. The durable wood of
Rhizophora, Avicennia, Bruguiera, Xylocarpus, and
Sonneratia species is highly valued for its resistance to
decay and damage by insects, making it ideal for
construction (housing, boat building, furniture), fuelwood,
and charcoal (7, 67-69). Beyond timber, mangroves provide
nutritious fodder, particularly from Avicennia marina,
sustaining livestocks (70). The medicinal potential of
mangroves is equally significant, with traditional applications
ranging from treating skin ailments and ulcers to dysentery
(71, 68, 72). Bioactive compounds from species like Nypa
fruticans and Ceriops spp. exhibit antimicrobial properties,
while the mangrove-associated tunicate Ecteinascidia
turbinata shows promise in cancer research (73, 74).
Additionally, tannins from Rhizophora mucronata and Ceriops
tagal are vital for leather tanning and dyeing (71).

Figure 5. Mangrove ecosystems.

Mangroves further bolster local economies through NTFPs
like honey (75) and fisheries (76), while their role in carbon
sequestration and coastal protection highlights their
ecological value (77, 55). However, overharvesting and
habitat degradation threaten these ecosystems (78),
necessitating community-based conservation and
sustainable harvesting practices (8). Balancing utilization
with preservation is key to ensuring mangroves continue to
sustain livelihoods while maintaining their critical ecological
functions.

Ecotourism and Recreation

Successful ecotourism models in Bali’'s mangrove forestsand
Vietnam’s Can Gi¢ Biosphere Reserve demonstrate how
tourism can be effectively integrated with biodiversity
conservation (84, 85). Beyond recreation, mangrove
ecotourism serves important educational functions. Research
tourism, student field visits, and nature-based learning
activities contribute to scientific understanding and promote
environmental awareness (86). Health and wellness tourism,
including meditation and therapeutic retreats, further utilize
the calming and restorative qualities of mangrove
environments (87).

These diverse activities align closely with multiple
Sustainable Development Goals particularly those related to
responsible consumption, climate action, and marine
ecosystem protection (88). The economic contributions are
substantial, with ecotourism generating employment,
supporting small-scale enterprises, and providing alternative
income streams for coastal communities (89). In regions
such as the Sundarbans and the Everglades, tourism revenue
directly supports conservation and management programs,
reinforcing local incentives for ecosystem protection (79, 83).
Overall, mangrove ecotourism represents a sustainable
strategy for coastal zone management under increasing
climatic and environmental pressures.

Water Filtration

Mangrove ecosystems function as highly efficient natural
water purification systems in coastal environments. Their
complex root networks trap sediments and contaminants
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(90), reducing offshore turbidity while offering protection
against shoreline erosion (91). This filtration capacity
safequards adjacent habitats particularly coral reefs and
seagrass meadows from sedimentation and nutrient
overload, thus supporting the goals outlined in SDG 14: Life
Below Water (92).

The saline environment in which mangroves thrive
exemplifies their exceptional filtering capabilities. Some
mangrove species can remove up to 90% of sodium ions
from seawater (93) through a specialized multilayered root
epidermis that selectively restricts Na* entry (94). For
instance, Rhizophora stylosa roots demonstrate a
hierarchical pore structure with an elevated zeta potential in
the outer layer, effectively excluding sodium ions and
providing a model for sustainable desalination technologies
(95).

In the Rio Coco Solo estuary of Panama, mangrove
vegetation significantly mitigates anthropogenic nutrient
inputs (96-99). Many mangrove species also support
phytostabilization of toxic metals within intertidal soils (99),
reducing the mobility and ecological impact of heavy metals
in polluted estuaries. These services are particularly crucial
in regions experiencing high nutrient loads from agriculture,
aquaculture, and urban wastewater.

Genetic Resources with Biotechnological Potential

Mangroves, adapted to extreme intertidal conditions,
possess unique genetic and biochemical traits that enable
them to withstand salinity, waterlogging, and oxidative
stress. These specialized adaptations offer promising
applications in biotechnology (100). Numerous mangrove-
associated microorganisms such as Penicillium, Chaetomium,
Humicola, Melanocarpus, and Bacillus species are utilized in
diverse industrial sectors including pulp and paper
processing, animal feed manufacturing, bakery and
beverage fermentation, and xylitol production (101).

Marine algae such as Codium fragile, C. latum, C.
dwarkense, and C. tomentosum produce compounds like
phyllacoid, agar, carrageenan, and alginate, all
demonstrating anticoagulant properties (102, 103). Fungal
extracts containing ethyl acetate derivatives act as
biopesticides (104, 105). Halophilic bacteria synthesize
polyketide synthases (PKSs) responsible for producing
medically important compounds such as erythromycin,
rapamycin, tetracycline, lovastatin, and resveratrol (106).

Other enzymes including catalase, peroxidase, oxidase,
polyphenol oxidase, and ascorbic acid oxidase from
Pseudomonas aeruginosa, P. alcaligenes, and Methylococcus
spp. hold significant industrial value (107). Additional
enzymes such as proteases, amylases, lipases, and
esterases produced by members of Vibronales,
Actinomycetales, and Bacillales are used in food,
pharmaceutical, and biofuel industries (108). Phytase
derived from Bacillus circulans, B. licheniformis, and B.
pantothenicus is important in agriculture (109), while
lipopeptides and glycolipids from Bacillus subtilis and
Pseudomonas aeruginosa act as effective biosurfactants
(110).

Mangrove-associated fungi such as Preussia aurantiaca
synthesize auranticins A and B with strong antimicrobial
properties (111). Aigialus parvus yields aigialomycins A-E
and hypothemicin, compounds with notable antimicrobial
activity (112). Actinomycetes produce secondary metabolites
exhibiting anti-cancer, anti-tumor, and anti-infective
activities (113). Xylaria species generate xyloketals A-E,

known inhibitors of acetylcholinesterase (114), while
isoflavones and prostaglandin derivatives from Phomopsis,
Paecilomyces, Sargassum, and Halorosellinia species display
anti-cancer effects (115).

Bacteria such as Pseudomonas, Shewanella,
Sphingomonas, Arthrobacter, Marinobacter, Alcanivorax,
Microbulbifer, Micrococcus, Cellulomonas, Dietzia, and
Gordonia contribute to bioremediation by degrading
polyaromatic hydrocarbons and oil contaminants (116-121).
Basidiomycetes enhance remediation efforts through the
production of laccase (122, 123). Phosphatases from B.
licheniformis, Chryseomonas luteola, Pseudomonas stutzeri,
and Aspergillus niger provide agricultural benefits (124, 125),
while halophilic archaea such as Halococcus synthesize L-
asparaginase for industrial use (126). Enzymes like xylanase
and ligninase, produced by Aspergillus niger and Phlebia
spp., are used in paper and biofuel industries (127).
Biosurfactants from Leuconobacter, B. subtilis, and P.
aeruginosa have wide biotechnological applications (128).
Fusarium species release enniatin G, an antimicrobial
compound (129), while Verruculina enalia produces enalin A
and B with similar activities (114, 130-132). Additionally,
fungal metabolites such as B-carboline, adenosine, and 8-
hydroxy-3,5-dimethylisochroman-1-one show potent anti-
tumor properties (132). Stress-adapted genes from
mangrove plants further provide valuable resources for
developing crops tolerant to salinity and drought. NHX-type
antiporters and osmoprotectant biosynthetic genes from
Avicennia marina and Rhizophora species, when expressed
in Arabidopsis, significantly improve stress tolerance (133).
The microbial associates of the seagrass Syringodium
isoetifolium showed notable antibacterial activity, with
Actinomycetes sp. (Act01) emerging as the most potent
isolate against antibiotic-resistant and fish bacterial
pathogens. Phylogenetic and GC-MS analyses confirmed
ActOl as a Streptomyces species producing a major
anthraquinone compound, highlighting its potential as a
novel antibacterial agent (134). Collectively, mangrove-
associated microorganisms represent powerful reservoirs of
novel bioactive metabolites and genetic resources with
applications in pharmaceuticals, bioremediation, and
climate-resilient agriculture (135).

A growing body of literature from 1991-2025 documents
expanding mangrove research across Western Asia, with
major themes centred on biodiversity, climate change
adaptation, and socio-economic relevance (136). Reviews
highlight key strengths such as the robustness of Avicennia
marina and rising institutional collaboration (136). However,
persistent weaknesses including fragmented governance and
insufficient data integration are compounded by threats from
climate change, industrial expansion, and transboundary
pollution (136).

Research Gaps and Future

Directions

Based on the synthesis of 135 studies, several cross-cutting
research gaps emerge. First, empirical work is heavily
concentrated in Southeast Asia, with limited data from Latin
America, Africa, Western Asia, and small island states,
underscoring the need for harmonized field and remote-
sensing assessments in under-represented regions. Second,
blue carbon research focuses largely on above-ground
biomass and the top 1 m of soil, with deep soil carbon,
lateral fluxes, and post-disturbance dynamics remaining
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poorly understood, calling for long-term, depth-resolved
carbon studies. Third, economic valuations of fisheries,
NTFPs, ecotourism, and carbon credits employ
heterogeneous methods and rarely adopt standardized TEV
or PES frameworks, limiting robust analysis of trade-offs and
opportunity costs. Fourth, evidence on coastal protection,
water filtration, and pollution control is often site-specific and
short-term, highlighting the need for multi-site, long-term
monitoring that links mangrove structure and water-quality
regulation to risk-reduction metrics and downstream
ecosystem health. Finally, biotechnological potential,
governance, and carbon-credit schemes are underexplored
beyond discovery-level studies; future research should move
towards pre-clinical/industrial pipelines, rigorous analysis of
governance and equity, robust MRV frameworks for blue
carbon projects, and long-term evaluation of hydrologically
sound restoration designs under climate-change scenarios.

Conclusion

Mangroves are among the planet’'s most valuable yet
increasingly threatened ecosystems. Although they occupy a
relatively small portion of global coastlines, their ecological
and socio-economic contributions are disproportionately
large. Ecologically, mangroves function as biodiversity
hotspots, nursery habitats for aquatic species, natural
coastal defense systems, and highly efficient blue carbon
stores substantially mitigating the impacts of climate
change. Economically, they support millions of livelihoods
through fisheries, timber and non-timber products,
ecotourism, and emerging carbon-credit markets, while
offering cost-effective alternatives to engineered coastal
infrastructure. However, escalating pressures ranging from
pollution and deforestation to aquaculture expansion and
sea-level rise underscore the urgency of integrated
conservation strategies. Protecting and restoring mangroves
is both an ecological necessity and a socio-economic
imperative, as their loss would jeopardize food security,
coastal resilience, and climate regulation for millions of
people. Future efforts must therefore prioritize ecosystem-
based management, combining habitat restoration,
community participation, robust policy frameworks, and
sustainable resource use. Recognizing mangroves as both
ecological keystones and economic assets will be essential
for ensuring their continued role as nature-based solutions
for a resilient and sustainable future.
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