
Sciences of Phytochemistry Page 14

Research Article

Sciences of Phytochemistry

Phytocompound Inhibitors of Caspase-3 as a Beta-
Cell Apoptosis Treatment Development Option: An
In Silico Approach
Igbokwe Mariagoretti Chikodili, Ibe Ifeoma Chioma, Ilechukwu Augusta Ukamaka, Oju Theclar Nnenna, Okoye Delphine
Ogechukwu, Ernest Eze Mmesoma, Ekeomodi Christabel Chikodi, Ejiofor InnocentMary IfedibaluChukwu  

[The author informations are in the declarations section. This article is published by ETFLIN in Sciences of Phytochemistry, Volume 2,
Issue 1, 2023, Page 14-30. https://doi.org/10.58920/sciphy02010017]

Received: 18 January 2023
Revised: 28 February 2023
Accepted: 08 March 2023
Published: 09 March 2023

Editor: James H.
Zothantluanga

 This article is licensed
under a Creative Commons
Attribution 4.0 International
License. © The author(s)
(2023).

Keywords: Diabetes, beta-
cells, apoptosis, Caspase 3,
phytocompounds, in-silico.

Abstract:  The prevalence  of  Diabetes  mellitus  (DM)  is  continuously  rising
worldwide. Among its types, type I is characterized by the destruction of beta
cells triggered by various mechanisms, including the activation of Caspase 3.
Studies  have  demonstrated  the  crucial  role  of  Caspase  3  in  initiating  the
apoptosis  of  beta  cells  in  DM.  Our  research  aims  to  identify  possible
phytocompounds inhibitors of Caspase 3 using computational approach. We
obtained 3D structures  of  Caspase 3  and 6511 phytocompounds from the
Protein Data Bank and the African Natural Products Database, respectively. The
phytocompounds were assessed for druglikeness properties, topological polar
surface area, and preliminary toxicity using DataWarrior. The phytocompounds
were subjected to molecular docking simulation (MDS) at Caspase 3 active site
using AutoDock-Vina. The frontrunner phytocompounds obtained from the MDS
were  subjected  to  protease  inhibition  prediction  on  Molinspiration.  The
pharmacokinetics of the phytocompounds were assessed on SwissADME. The
in-depth  computational  toxicity  profile  of  the  phytocompounds  was  evaluated
on  the  pkCSM web.  The  binding  interactions  of  the  phytocompounds  with
Caspase  3  were  assessed  with  Discovery  Studio  Visualizer  and  Maestro.
Seventeen phytocompounds were found to have no violation of Lipinski's rule
and had no toxicity based on the preliminary assessment, have better binding
affinity  and  protease  inhibitory  prediction  scores  than  the  references,  have
optimistic bioactivity radar prediction and similar amino acids interaction, in
comparison with the references. Further studies, which include in-vitro and in-
vivo studies, will be carried out to validate the results of this study.

Introduction
Beta-cell  apoptosis  is  a  crit ical  event  in  the
pathogenesis of type 1 diabetes mellitus (DM). Aside
from being the primary mechanism by which cells are
destroyed, beta-cell apoptosis has been linked to the
onset  of  type  1  DM  via  antigen  cross-presentation
mechanisms  that  result  in  beta-cell-specific  T-cell
activation  (1).  Apoptosis  can  be  activated  via  the
extrinsic  death  receptor  or  intrinsic  mitochondrial
pathway, activating effector caspases (2). Apoptosis is
also  a  critical  process  in  the  development  of
atherosclerosis  (2).

Caspases are endoproteases and genes crucial for

preserving homeostasis by controlling cell death and
inflammation.  A  phylogenetically  conserved  death
program  that  is  essential  for  the  homeostasis  and
growth of  higher  organisms carefully  regulates their
activation.  Numerous  human  diseases  are  primarily
pathogenetic  due to  the  dysregulation  of  apoptosis.
Caspases  are  potential  therapeutic  targets  because
they are part of the apoptotic machinery (3, 4).

Caspases  are  classified  broadly  according  to  their
known roles in apoptosis (caspase-3, -6, -7, -8, and -9
in  mammals)  and  inflammation  (caspase-1,  -4,  -5,  -12
in  humans  and  caspase-1,  -11,  and  -12  in  mice).
Caspase-2, -10, and -14 functions are more difficult  to
classify.  Caspases  involved  in  apoptosis  have  been
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divided into two groups based on their mechanism of
action:  initiator  caspases (caspases -  8 and -9)  and
executioner caspases (caspase-3, -6, and -7) (3).

In  a  study  titled  "Caspase-3-Dependent  -Cell
Apoptosis  in  the  Initiation  of  Autoimmune  Diabetes
Mellitus", the authors used a genetic approach to show
that this process is necessary for cross-presentation of
beta-cell  antigen  to  activate  beta-cell-specific  T  cells
(1). They proved that mice lacking caspase-3 do not
experience the onset of autoimmune diabetes, which is
indicated by normal level of glucose concentration in
the  blood,  unaffected  beta-cells  revealing  high  insulin
content,  and  absence  of  beta-cell  specific  T-cell
activation in the pancreatic draining lymph nodes. In a
different study titled "Immunocytochemical localization
of caspase-3 in pancreatic islets from type 2 diabetic
subjects",  the  author  reported  finding  more  cleaved
caspase-3 immunostained islets from type 2 diabetics,
which may indicate an accelerated apoptotic cascade
in the islets, along with increasing amyloid deposition
before ultimate cell death (5).

The  improper  control  of  caspase-mediated  cell
death  and  inflammation  is  linked  to  various  illnesses,
including  inflammatory,  neurological,  and  other
metabolic diseases and cancer. It may be necessary to
therapeutically target caspase-3 activity in cells to stop
the  onset  of  autoimmune  diabetes  (1).  Numerous
natural  and  synthetic  caspase  inhibitors  have  been
discovered  and  created  to  be  used  therapeutically.
Only  a  few  synthetic  caspase  inhibitors  have
progressed into  clinical  trials  due to  their  lacklustre
efficacy or harmful side effects. They have yet to prove
compelling enough for patient use (6).

The aim of this study is to detect phytocompounds
with drug like properties in African plants that could
inhibit Caspase-3 through in silico analysis.

Materials and Methods
Materials
The  materials  used  are  personal  computer,  African
Natura l  Compounds  Database ,  PubChem
(http://Pubchem.ncbi.nlm.nih.gov) (7), Linux operating
system  (Ubuntu  desktop  18.04),  Protein  data  bank
(https://www.rcsb.org/)  (8),  DataWarrior  software (9),
PyMOL  software  (10),  AutoDockTools-1.5.6  software
(11),  AutoDock Vina 1.1.2  software (12),  on Ubuntu
o p e r a t i n g  s y s t e m ,  a n d  M o l i n s p i r a t i o n
C h e m o i n f o r m a t i c s  w e b  t o o l
(https://www.molinspiration.com/cgi-bin/properties)
(13).

Literature Mining
To  find  essential  targets  and  receptors  for  apoptotic
processes, literatures were explored. This was done to
examine the role of the target and receptors in the

pathophysiology and initiation of  cell  apoptosis.  This
provides  more  details  regarding  the  receptor's
characteristics,  activities,  and  druggability.

Selection and Preparation of the Receptor
Caspase 3 in  3D format  was retrieved from Protein
Data Bank (PDB) with the PDB ID: 3KJF after various
targets  and  receptors  had  been  identified,  literature
had been mined, and the target and receptor had been
analyzed. PyMOL program was initially used to prepare
the  pdb  file  by  selecting  the  necessary  chains  and
deleting  multiple  ligands.  To  understand  how  the
ligands attach to receptors, PyMOL software was used.
The AutoDockTools was used to get the receptor ready
for molecular docking simulations. The receptors were
prepared  by  adding  polar  hydrogens  and  Kollman's
charges  before  storing  them  in  the  pdbqt  file  format,
the structural format needed for performing molecular
docking  simulation  on  Autodock  vina.  As  shown  in
Table 1,  the electrostatic grid boxes and the three-
dimensional  affinity  with  various  sizes  and  centers
were  formed  around  the  protein's  active  region.

Table 1. Grid box parameters used for the molecular
docking simulations.

Axis Centres Sizes
X 21.94 14
Y -4.306 14
Z 10.718 14

Selection of the Ligands 
In this study, 6511 phytocompounds were examined,
which were obtained from the African Natural Products
Database  (African-compounds.org)  (14,  15).  The
compounds were downloaded as 3D-structure data files
for  analysis.  Various  parameters  such  as  partition
coefficient  (Log  P),  topological  polar  surface  area
(TPSA), molecular weight, hydrogen bond donor, and
hydrogen  bond  acceptor  were  used  to  assess  the
phytocompounds. Some of the phytocompounds were
found to  infringe  Lipinski's  rule.  Those  that  did  not
breach the rule underwent toxicological assessment for
mutagenicity,  carcinogenicity,  tumorigenicity,  and
reproductive  effect.

Preparation of the Ligands
Phytocompounds  with  no  Lipinski’s  rule  of  five
infarction  and  no  predicted  toxicity  (mutagenicity,
carcinogenicity,  tumorigenicity,  and  reproductive
effect)  in  silico  were  prepared  for  the  molecular
docking  simulation.  Reference  ligands  were  identified
from  the  literature,  including  the  compound  co-
crystallized  with  the  receptor/protein  on  the  PDB
database. In preparation for the ligands for molecular
docking simulation, all rotatable bonds, torsions, and
Gasteiger  charges  were  assigned  and  saved  in  the
pdbqt file format.
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Validation of Docking Protocol
The PDB structure of the 3KJF (Caspase 3) protein, in
association  with  a  reference  inhibitor  as  was
downloaded from the PDB, was replicated in silico to
validate the molecular docking simulations procedure
for this protein. Other known inhibitors of Caspase 3
were  also  used  for  the  validation,  including
Flubendazole,  Fenoprofen,  Pranoprofen,  and  Diflunisal
(16).  The AutoDockTools-1.5.6 was used to calculate
polar hydrogen, Kollman charges, grid box sizes, and
centers at a grid space of 1.0 (11, 12). The protein was
stored as a pdbqt file. AutoDockTools-1.5.6 was used to
prepare the reference chemicals for molecular docking
simulation.  Torsion-free bonds,  as well  as any other
rotatable  bonds,  were  permitted.  After  that,  files  with
the pdbqt extension were generated as output. On a
Linux environment, a virtual screening shell script was
used  to  locally  implement  the  AutoDockVina®
molecular  docking  simulation  of  the  protein  and
reference chemical utilizing the centers and sizes (12).
Co-crystal inhibitor binding interaction was compared
with  the  re-docked  co-crystalized  compounds,
Flubendazole,  Fenoprofen,  Pranoprofen,  and  Diflunisal
using  PyMol-1.4.1  software  and  Discovery  studio
visualizer.

Molecular Docking of the
Phytocompounds on Caspase 3
The  phytocompounds  were  prepared  in  batches  for
molecular docking simulations using virtual screening
scripts against the Caspase 3. Following the validation
of  docking  methods,  four  replicates  of  Molecular
Docking  Simulations  were  performed  on  a  Linux
platform using AutoDockVina® and related tools.  To
determine the leading phytocompounds, binding free
energy values (kcal/mol SD) were ranked.

Bioactivity Prediction of Phytocompounds
The  online  Molinspiration  web  tool  version  2011.06
(www.molinspiration.com)  was  supplied  SMILES
notations of the leading phytocompounds to forecast
the bioactivity scores for protease inhibition.

Computational Pharmacokinetics of
Frontrunner Phytocompounds
The  top  phytocompounds  underwent  a  thorough
pharmacokinetics evaluation using SwissADME, a web-
based  tool  that  assesses  the  drugl ikeness,
physicochemical,  ADME  properties,  and  medicinal
chemistry compatibility of  small  molecules (17).  The
assessment  was  conducted  to  examine  the
pharmacokinetics  of  the  lead  phytocompounds  in
detail.

In-depth Toxicity Assessment of
Frontrunner Phytocompounds 
An  in-depth  toxicity  prediction  of  the  frontrunner

phytocompounds  for  AMES  toxicity,  Max.  tolerated
dose (human), hERG I inhibitor, hERG II inhibitor, Oral
Rat Acute Toxicity (LD50),  Oral  Rat  Chronic Toxicity
(LOAEL),  Hepatotoxicity,  Skin  Sensitization,  T.
Pyriformis toxicity and Minnow toxicity on the pkCSM
platform (18).

Analysis of the Frontrunner
Phytocompounds-Caspase 3 Binding
Interactions 
The amino acids of Caspase 3 binding interactions with
each  frontrunner  phytocompounds  were  analyzed
using Discovery Studio Visualizer v20.1.0.19295, and
Maestro 13.3 aided the generation of 2D structures of
the interaction for easy observation (19, 20).

Results
Preliminary Drug-likeness and Toxicity
Assessment of the Ligands
(Phytocompounds)
The  drug- l ikeness  assessment  of  the  6511
phytocompounds was performed using Lipinski's rule of
five  to  screen  out  phytocompounds  that  violated  the
guidelines  on  the  DataWarrior  application.  Following
the screening, 3814 phytocompounds had no infraction
of  Lipinski's  rule,  but  2697  phytocompounds  did.
Toxicity testing on the 3814 phytocompounds that did
not  violate  Lipinski's  criteria  was  performed  using
DataWarrior to discover phytocompounds that could be
mutagenic,  tumorigenic,  irr itating,  or  have
reproductive implications. In silico testing revealed that
1897  phytocompounds  possessed  none  of  the
identified toxicities. The total polar surface area (TPSA)
was also calculated for each phytocompounds.

Validation of Docking Protocol
The docking procedure was validated to assure the in
silico  repeatability of the experimental protein-ligand
interactions gathered from the protein data bank and
to  observe  Caspase  3  amino-acids-conventional
hydrogen  bond  interactions  with  the  reference
compounds  known  as  inhibitors  of  caspase  3.  This
validation  ensures  accuracy,  reliability,  and
reproducibility in computational predictions. Figure 1
is the 2D representation of the docked co-crystalized
ligand  and  reference  compounds  with  the  specific
Caspase  3  amino  acids  involved  in  the  interaction,
visually illustrating key molecular interactions. Table 2
shows the binding energy of the docked co-crystalized
ligand and that of the reference known inhibitors of
caspase  3,  providing  a  comparative  assessment  of
their  binding  affinities.  Table 3  shows each  reference
compound,  docked  co-crystalized  ligand,  and  the
docked  co-crystalized  ligand  with  the  specific  amino
acids  involved  in  their  interaction  with  caspase  3,
further  detailing  binding  site  preferences  and
interaction  strength.
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Figure 1. 2D representations of the docked co-crystalized ligand and reference compounds amino acids interaction.

Table 2. Mean binding energies of the docked co-crystalized ligand and reference compounds.

No. Reference compounds Mean Binding Affinity Standard Deviation
1 Flubendazole -7.60 0.20
2 Diflunisal -7.20 0.00
3 B92 (Co-crystalized) -7.13 0.15
4 Pranoprofen -6.50 0.00
5 Fenoprofen -6.18 0.05

Table 3. Mean binding energies of the docked co-crystalized ligand and reference compounds.

No. Reference compounds Amino acids
1 B92 ARG 207,SER 205, SER 209
2 B92 (Co-crystalized) ARG 207, SER 209, PHE 250
3 Diflunisal ASN 208, SER 209
4 Pranoprofen ASN 208
5 Fenoprofen SER 209
6 Flubendazole ARG 207, ASN 208, PHE 250

https://etflin.com/sciphy


Chikodili, I.M. et al. (2023) etflin.com/sciphy

Sciences of Phytochemistry Page 18

Table 4. Phytocompounds with better mean binding affinities than the reference compounds.

No. Compound name Mean
Binding
Affinity

Standard
Deviation
(±)

Molecular
Weight

Octanol-Water
Coefficient

Hydrogen
Bond
Acceptors

Hydrogen
Donor

Topological
Polar
Surface
Area

1 Amataine -9.20 0.00 493.65 -2.75 7.00 2.00 49.04
2 3'-epi-afroside -9.20 0.00 534.64 1.07 9.00 4.00 134.91
3 Neoilexonol -8.70 0.00 442.73 6.67 2.00 1.00 37.30
4 Chrysophanol-10,10'-bianthrone -8.70 0.00 478.50 4.70 6.00 4.00 115.06
5 Hydroxyhopane -8.50 0.00 426.73 7.16 1.00 1.00 20.23
6 Taraxast-20-ene-3beta,30-diol -8.50 0.00 446.76 8.49 2.00 2.00 40.46
7 Caulindole A -8.50 0.00 368.52 5.38 2.00 2.00 31.58
8 Acacic acid lactone -8.50 0.00 470.69 4.79 4.00 2.00 66.76
9 3-oxo-12beta-hydroxy-

Oleanan-28,13beta-olide
-8.50 0.00 430.67 5.60 3.00 1.00 46.53

10 Lucidene -8.50 0.00 416.60 8.00 2.00 0.00 18.46
11 Millettone -8.40 0.00 382.41 1.24 6.00 0.00 77.05
12 Taraxasterol -8.30 0.00 424.71 7.00 1.00 1.00 20.23
13 5,6-dehydrocalotropin -8.30 0.00 532.63 0.79 9.00 3.00 131.75
14 Chrysophanol- isophyscion

Bianthrone
-8.30 0.00 508.53 4.63 7.00 4.00 124.29

15 Uguenensene -8.30 0.00 484.59 2.99 7.00 0.00 87.50
16 Calotroproceryl acetate A -8.10 0.00 466.75 7.74 2.00 0.00 26.30
17 Lupeol -8.10 0.00 440.75 7.98 1.00 1.00 20.23
18 Beta-amyrin -8.10 0.00 426.73 7.34 1.00 1.00 20.23
19 Anastatin B -8.10 0.00 378.34 3.58 7.00 4.00 120.36
20 3-hydroxycycloart-24-one -8.10 0.00 442.73 6.86 2.00 1.00 37.30
21 Diketo leucolactone -8.10 0.00 468.68 5.04 4.00 1.00 63.60
22 Sigmoidin E -8.08 0.22 406.48 5.55 5.00 2.00 75.99
23 Di-podocarpanoid hugonone A -8.08 0.25 586.85 4.53 6.00 5.00 118.22
24 24-methylene cycloartanol -8.05 0.06 440.75 8.34 1.00 1.00 20.23
25 Isojamaicin -8.05 0.06 378.38 3.73 6.00 0.00 63.22
26 Seneganolide -8.03 0.05 470.52 1.37 8.00 1.00 112.27
27 24-methylencycloartanol -8.00 0.00 438.74 8.08 1.00 1.00 20.23
28 Scalarolide -8.00 0.00 386.57 4.51 3.00 1.00 46.53
29 Citriquinochroman -8.00 0.00 442.47 3.88 7.00 2.00 89.79
30 Matricolone -8.00 0.00 286.41 3.36 2.00 1.00 37.30
31 Epi-lupeol -8.00 0.00 426.73 7.65 1.00 1.00 20.23
32 20-epi-isoiguesterinol -8.00 0.00 424.62 5.19 3.00 2.00 57.53
33 Melliferone -8.00 0.00 452.68 5.64 3.00 0.00 43.37
34 Abyssinone I -8.00 0.00 322.36 3.87 4.00 1.00 55.76
35 Argeloside O -7.93 0.05 521.63 0.31 9.00 0.00 112.58
36 Calotropursenyl acetate B -7.90 0.00 468.76 7.84 2.00 0.00 26.30
37 Beta-anhydroepidigitoxigenin -7.90 0.00 356.50 3.47 3.00 1.00 46.53
38 3-acetyltaraxasterol -7.90 0.00 468.76 7.84 2.00 0.00 26.30
39 Lupeol acetate -7.90 0.00 480.77 8.20 2.00 0.00 26.30
40 Siphonellinol C -7.90 0.00 490.72 5.04 5.00 4.00 90.15
41 Isoadiantol -7.90 0.00 426.73 7.11 1.00 1.00 20.23
42 3-acetylsesterstatin 1 -7.90 0.00 446.63 4.07 5.00 1.00 72.83
43 1,5-di-O-caffeoylquinic acid -7.90 0.00 426.73 7.59 1.00 0.00 17.07
44 Tingenin B -7.90 0.00 438.61 4.55 4.00 2.00 74.60
45 Friedelane-3,7-dione -7.90 0.00 440.71 6.88 2.00 0.00 34.14
46 Norisojamicin -7.90 0.00 364.35 3.46 6.00 1.00 74.22
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47 A-homo-3a-oxa-5beta-
Olean-12-en-3- one-28-oic acid

-7.90 0.00 471.70 3.58 4.00 0.00 66.43

48 Corosolic acid -7.90 0.00 473.72 3.18 4.00 2.00 80.59
49 Lupenone -7.88 0.05 424.71 7.79 1.00 0.00 17.07
50 Coladin -7.88 0.17 424.54 4.92 5.00 0.00 61.83
51 Abyssinone III -7.88 0.19 390.48 5.90 4.00 1.00 55.76
52 Neomacrotriol -7.85 0.06 472.75 6.63 3.00 3.00 60.69
53 Abyssinoflavone V -7.85 0.06 338.36 3.53 5.00 2.00 75.99
54 13-hydroxyfeselol -7.85 0.06 400.51 3.53 5.00 2.00 75.99
55 Assafoetidnol A -7.83 0.05 398.50 3.15 5.00 2.00 75.99
56 Demethoxyexcelsin -7.83 0.05 384.38 3.15 7.00 0.00 64.61
57 3-taraxasterol -7.80 0.00 430.76 9.48 1.00 1.00 20.23
58 Neoilexonol acetate -7.80 0.00 484.76 7.16 3.00 0.00 43.37
59 Sipholenol I -7.80 0.00 508.74 3.59 6.00 4.00 102.68
60 Cabralealactone -7.80 0.00 412.61 5.00 3.00 0.00 43.37
61 Ursolic acid -7.80 0.00 455.70 3.76 3.00 1.00 60.36
62 Stylopine -7.80 0.00 328.39 0.46 5.00 2.00 44.66
63 Khayanolide D -7.80 0.00 502.56 1.07 9.00 3.00 135.66
64 Olean-12-en-3-one -7.80 0.00 426.73 7.59 1.00 0.00 17.07
65 Tribulus saponin aglycone 1 -7.80 0.00 350.54 4.75 3.00 2.00 49.69
66 Foetidin -7.80 0.00 381.49 5.47 4.00 2.00 51.83
67 Samarcandin -7.80 0.00 400.51 3.47 5.00 2.00 75.99
68 Resinone -7.80 0.00 440.71 6.94 2.00 1.00 37.30
69 Uncinatone -7.80 0.00 318.41 3.97 4.00 2.00 66.76
70 Urs-9(11),12-dien-3beta-ol -7.80 0.14 424.71 7.17 1.00 1.00 20.23
71 Sesamin -7.78 0.05 354.36 3.22 6.00 0.00 55.38
72 Euphornin C -7.75 0.30 546.70 4.95 8.00 1.00 116.20
73 Salmahyrtisol B -7.75 0.06 386.57 4.51 3.00 1.00 46.53
74 Isoferprenin -7.75 0.06 362.47 6.42 3.00 0.00 35.53
75 (Â±)-paulownia -7.75 0.06 370.36 2.40 7.00 1.00 75.61
76 Limonin -7.75 0.06 470.52 1.03 8.00 0.00 104.57
77 Sablacaurin A -7.73 0.15 482.79 9.30 2.00 0.00 26.30
78 Farnesiferol A -7.73 0.05 384.51 3.58 4.00 1.00 55.76
79 Epilupeol -7.70 0.00 426.73 7.65 1.00 1.00 20.23
80 Lupenone -7.70 0.00 424.71 7.79 1.00 0.00 17.07
81 Sipholenol A -7.70 0.00 478.76 5.38 4.00 3.00 69.92
82 Taraxasteryl acetate -7.70 0.00 468.76 7.84 2.00 0.00 26.30
83 Retusolide B -7.70 0.00 316.44 2.95 3.00 0.00 43.37
84 Cycloart-23Z-ene-3beta,25-diol -7.70 0.00 456.75 7.32 2.00 1.00 29.46
85 7-deacetoxy-7-oxogedunin -7.70 0.00 440.53 2.82 6.00 0.00 86.11
86 Tribulus saponin aglycone 2 -7.70 0.00 434.66 4.18 4.00 3.00 69.92
87 Lup-20(29)-ene-3beta,23-diol -7.70 0.00 456.75 7.05 2.00 2.00 40.46
88 Beta-boswellic acid -7.70 0.00 455.70 3.93 3.00 1.00 60.36
89 3-ketotirucall-8,24-dien-21-oic

acid
-7.70 0.00 425.63 4.43 3.00 0.00 57.20

90 6-oxoisoiguesterin -7.70 0.00 420.59 6.02 3.00 2.00 57.53
91 Friedelanol methyl ether -7.70 0.00 470.82 8.44 1.00 0.00 9.23
92 Jamaicin -7.70 0.00 378.38 3.73 6.00 0.00 63.22
93 Calopogonium isoflavone B -7.70 0.00 348.35 3.80 5.00 0.00 53.99
94 Di-podocarpanoid hugonone B -7.70 0.00 580.80 4.03 6.00 4.00 115.06
95 3-O-benzoylhosloquinone -7.70 0.00 420.55 5.24 4.00 0.00 60.44
96 Isochamanetin -7.68 0.05 364.40 3.80 5.00 3.00 86.99
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97 Oleanolic acid -7.68 0.05 457.72 4.09 3.00 1.00 60.36
98 Pectachol B -7.68 0.05 442.55 4.29 6.00 1.00 74.22
99 3-O-benzoylhosloppone -7.65 0.10 420.55 4.76 4.00 1.00 63.60
100 Lup-20(29)-ene-3-acetate -7.63 0.05 467.76 5.87 2.00 0.00 40.13
101 Marmaricin -7.63 0.05 384.51 3.93 4.00 1.00 55.76
102 Calactin -7.60 0.00 532.63 0.79 9.00 3.00 131.75
103 Olibanumol H -7.60 0.00 460.74 5.66 3.00 3.00 60.69
104 Botulin -7.60 0.00 442.73 6.72 2.00 2.00 40.46
105 Proscillaridin -7.60 0.00 532.67 2.09 8.00 4.00 125.68
106 Ottelione B -7.60 0.00 312.41 3.93 3.00 1.00 46.53
107 Sesterstatin 7 -7.60 0.00 444.61 4.14 5.00 1.00 72.83
108 Sonchuside A -7.60 0.00 416.51 1.08 8.00 4.00 125.68
109 3alpha-acetoxyolean-12-en-28-al -7.60 0.00 499.75 4.58 4.00 0.00 66.43
110 Beta-amyrin acetate -7.60 0.00 468.76 7.65 2.00 0.00 26.30
111 Isoiguesterin -7.60 0.00 408.62 5.84 2.00 1.00 37.30
112 5beta,24-cyclofriedelan-3-one -7.60 0.00 424.71 7.29 1.00 0.00 17.07
113 Sigmoidin B -7.60 0.00 356.37 3.83 6.00 4.00 107.22
114 Sigmoidin F -7.60 0.00 422.48 5.20 6.00 3.00 96.22
115 3'-prenylnaringenin -7.60 0.00 338.36 4.36 5.00 3.00 86.99
116 Abyssinin I -7.60 0.00 368.38 3.46 6.00 2.00 85.22
117 Durmillone -7.60 0.00 378.38 3.73 6.00 0.00 63.22
118 Hugonone A -7.60 0.00 584.84 4.64 6.00 4.00 115.06
119 3-oxo-12-oleanen-28-oic acid -7.60 0.00 453.68 4.13 3.00 0.00 57.20
120 Limonyl acetate -7.60 0.00 514.57 1.37 9.00 0.00 113.80
121 Flubendazole -7.60 0.20      
122 Diflunisal -7.20 0.00      
123 B92 -7.13 0.15      
124 Pranoprofen -6.50 0.00      
125 Fenoprofen -6.18 0.05      

Molecular Docking of the
Phytocompounds against Caspase 3
To  identify  phytocompounds  with  greater  in  silico
binding  energies  against  Caspase  3  than  the  co-
crystalized ligand and reference compounds, molecular
docking of  the phytocompounds was carried out  on
Caspase 3. The result is presented in Table 4, showing
phytocompounds with higher  mean binding energies
than  the  co-crystalized  ligand  and  reference
compounds.  The  table  also  contains  Lipinski's  rule
parameters and TPSA values of the phytocompounds.

Bioactivity Prediction of Phytocompounds
Because Caspase 3 is a protease, the phytocompounds
were screened computationally  on Molinspiration for
their  ability  to  inhibit  protease.  According  to  the
results, 80 phytocompounds were discovered to have
computational protease inhibitory scores below the co-
crystalized  ligand  (B92)  and  above  the  four  other
reference  compounds  used  (Flubendazole,
Pranoprofen,  Fenoprofen,  and  Diflunisal).  Table  5
below shows the outcomes of the bioactivity prediction
of the phytocompounds with higher binding energies
than  the  co-crystalized  ligand  and  reference

compounds. One of the phytocompounds, as shown in
Table 5,  has a bioactivity score above Pranoprofen,
Fenoprofen,  and  Diflunisal  but  below  B92  and
Flubendazole.

Computation Pharmacokinetics of
Frontrunner Phytocompounds
The  pharmacokinetic  assessment  of  frontrunner
phytocompounds,  reference  compounds,  and  co-
crystalized  ligands  is  shown  in  Figure  2  using
bioavailability radar graphics. The components include
Lipophilicity  (LIPO),  size,  polarity  (POLAR),  solubility
(INSOLU),  flexibility  (FLEX),  and  saturation  (INSATU).
The reference compounds and co-crystalized ligands
fai led  the  bioavai labi l i ty  radar  test .  Of  82
phytocompounds assessed, 18 fell within the optimal
bioavailability range.

In-depth Toxicity Prediction of
Frontrunner Phytocompounds
The results of the in-depth toxicity prediction of the
frontrunner  compounds  are  presented  in  Table  6,
showing  different  toxicities  against  which  the
phytocompounds  were  predicted.
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Table 5. Bioactivity scores of the phytocompounds with their plant sources.

No. Phytochemical Protease Inhibitory score Plant source
1 B92 0.50
2 9R-hydroxysarcophine 0.41 Sarcophyton glaucum
3 Beta-boswellic acid 0.33 Boswellia species
4 Sipholenol I 0.3 Callyspongia siphonella
5 Olean-12-en-3- one-28-oic acid 0.28 Albizia gummifera
6 Tribulus saponin aglycone 2 0.26 Tribulus species
7 Urs-12-ene-1beta,3beta,11alpha,15alpha-tetraol 0.25 Salvia argentea var. aurasiaca
8 Neoilexonol 0.23 Boswellia carterii
9 Ursolic acid 0.23 Amaracus akhdarensis
10 3beta-hydroxy-11alpha-methoxyurs-12-ene 0.22 Launaea arborescens
11 1,5-di-O-caffeoylquinic acid 0.21 Cynara cardunculus
12 Olibanumol H 0.21 Boswellia carterii
13 Isoadiantol 0.18 Adiantum capillus-veneris
14 Lup-20(29)-ene-3beta,23-diol 0.18 Salvia palaestina
15 Uguenensene 0.17 Vepris uguenensis
16 (+)-7alpha,8beta-dihydroxydeepoxysarcophine 0.17 Sarcophyton auritum
17 Neoilexonol acetate 0.17 Boswellia carterii
18 Cycloart-23Z-ene-3beta,25-diol 0.17 Euphorbia bupleuroides
19 Taraxasterol 0.16 Calotropis procera
20 Lupeol 0.16 Salvia palaestina
21 Taraxasterol 0.16 Calotropis procera
22 Sonchuside A 0.16 Launaea arborescens
23 3-O-alpha-L-arabinopyranosyl-echinocystic acid 0.15 Dizygotheca kerchoveana
24 Epilupeol 0.15 Boswellia species
25 Oleanolic acid 0.15 Salia triloba
26 Abyssinoflavone V 0.14 Erythrina abyssinica
27 Isoferprenin 0.14 Ferula communis var. genuina
28 Limonyl acetate 0.14 Vepris uguenensis
29 3-hydroxycycloart-24-one 0.13 Euphorbia guyoniana
30 Sigmoidin E 0.13 Erythrina abyssinica
31 Tribulus saponin aglycone 1 0.13 Tribulus species
32 Isochamanetin 0.13 Uvaria lucida ssp. lucida
34 Hydroxyhopane 0.12 Azolla nilotica
35 Siphonellinol C 0.12 Callyspongia siphonella
36 Urs-9(11),12-dien-3beta-ol 0.12 Boswellia carterii
37 Sipholenol A 0.12 Callyspongia siphonella
38 Calactin 0.12 Pergularia tomentosa
39 3alpha-acetoxyolean-12-en-28-al 0.12 Salvia palaestina
40 Beta-amyrin 0.11 Trichodesma africanum
41 Abyssinone I 0.11 Erythrina abyssinica
42 Calotropursenyl acetate B 0.11 Calotropis procera
43 Lupeol acetate 0.11 Torilis radiata
44 Abyssinone III 0.11 Erythrina abyssinica
45 3-acetylsesterstatin 1 0.1 Hyrtios erecta
46 Sigmoidin F 0.1 Erythrina abyssinica
47 Resinone 0.09 Drypetes gerrardii
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48 Euphornin C 0.09 Euphorbia helioscopia
49 Lucidene 0.08 Uvaria species
50 Calotroproceryl acetate A 0.08 Calotropis procera
51 Beta-anhydroepidigitoxigenin 0.08 Calotropis procera
52 3-taraxasterol 0.08 Pergularia tomentosa
53 3'-epi-afroside 0.07 Gomphocarpus sinaicus
54 Taraxast-20-ene-3beta,30-diol 0.07 Launaea arborescens
55 5,6-dehydrocalotropin 0.07 Gomphocarpus sinaicus
56 Argeloside O 0.07 Solenostemma argel
57 Khayanolide D 0.07 Khaya senegalensis
58 5beta,24-cyclofriedelan-3-one 0.07 Drypetes gerrardii
59 24-methylene cycloartanol 0.06 Euphorbia helioscopia
60 24-methylencycloartanol 0.06 Euphorbia bupleuroides
61 Limonin 0.06 Vepris glomerata
62 Sesterstatin 7 0.06 Hyrtios erecta
63 Beta-amyrin acetate 0.06 Scorzonera undulata
64 Anastatin B 0.05 Anastatica hierochuntica
65 Scalarolide 0.05 Hyrtios erecta
66 Retusolide B 0.05 Euphorbia retusa
67 3-O-benzoylhosloquinone 0.05 Hoslundia opposita
68 Lup-20(29)-ene-3-acetate 0.05 Euphorbia helioscopia
69 Neomacrotriol 0.04 Neoboutonia macrocalyx
70 3-acetyltaraxasterol 0.03 Pergularia tomentosa
71 Tingenin B 0.03 Elaeodendron schlechteranum
72 Friedelane-3,7-dione 0.03 Drypetes gerrardii
73 Taraxasteryl acetate 0.03 Achillea fragrantissima
74 Abyssinin I 0.03 Erythrina abyssinica
75 3-oxo-12-oleanen-28-oic acid 0.03 Ekebergia benguelensis
76 Di-podocarpanoid hugonone A 0.01 Hugonia busseana
77 20-epi-isoiguesterinol 0.01 Salacia madagascariensis
78 Lupenone 0.01 Diospyros mespiliformis
79 Sablacaurin A 0.01 Sabal causiarum
80 Lupenone 0.01 Diospyros mespiliformis
81 Hugonone A 0.01 Hugonia castaneifolia

Flubendazole 0.01
82 7-deacetoxy-7-oxogedunin 0.00 Swietenia mahogani

Pranoprofen -0.05
Fenoprofen -0.07
Diflunisal -0.14
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Figure 2. Bioavailability radar of the frontrunner phytocompounds.
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Table 6. In-depth toxicity prediction of frontrunner phytocompounds.
No. Phytocompounds AMES

toxicity
Max.
tolerated
dose
(human)
 

hERG I
inhibitor

hERG II
inhibitor

Oral
Rat
Acute
Toxicity
(LD50)

Oral
Rat
Chronic
Toxicity

Hepatotoxicity Skin
Sensitization

T.Pyriformis
toxicity

Minnow
toxicity

1 Tribulus saponin aglycone 2 No -0.925 No No 2.220 1.629 No No 0.396 0.289
2 Uguenensene No -0.768 No No 2.985 0.033 No No 0.29 0.869
3 Sonchuside A No 0.501 No No 2.559 2.631 No No 0.286 3.134
4 Abyssinoflavone V No -0.245 No No 2.475 1.863 No No 0.609 1.939
5 Isoferprenin No 0.482 No No 2.329 2.227 Yes No 1.462 -2.800
6 Limonyl No -0.773 No No 3.604 1.195 Yes No 0.286 1.963
7 Siphonellinol C No -0.955 No No 2.993 -0.097 No No 0.495 1.376
8 Sipholenol A No -1.055 No Yes 2.364 1.489 No No 0.521 0.310
9 Abyssinone I Yes -0.139 No No 2.363 1.754 No No 1.230 1.270
10 3-acetylsesterstatin 1 No -1.115 No No 2.669 0.463 No No 0.381 -0.243
11 Sigmoidin F No -0.267 No Yes 2.274 2.036 No No 0.332 0.285
12 Beta-anhydroepidigitoxigenin No -0.567 No No 2.001 1.726 Yes No 0.637 -0.142
13 Limonin No -0.651 No No 3.23 1.872 No No 0.287 0.424
14 Retusolide B No -0.032 No No 1.868 1.665 No No 0.657 -0.738
15 Tingenin B No -0.538 No No 3.096 1.601 Yes No 0.386 0.564
16 Abyssinin I No 0.127 No No 2.350 2.070 No No 0.338 0.393
17 7-deacetoxy-7-oxogedunin No -0.793 No No 2.598 1.760 No No 0.321 0.638
 Flubendazole Yes 0.328 No Yes 2.471 2.254 Yes No 0.285 0.821
 Pranoprofen No 0.701 No No 2.659 1.384 Yes No 0.289 1.475
 Fenoprofen No 0.648 No No 2.113 2.010 No No 0.286 0.088
 Diflunisal No 0.956 No No 2.789 2.443 No No 0.286 1.357
 B92 No 1.419 No No 2.321 2.765 Yes No 0.285 2.568

Analysis of the Frontrunner
Phytocompounds-Caspase 3 Binding
Interactions
The  binding  interactions  between  the  frontrunner
phytocompounds and Caspase 3 were analyzed using
Maestro  13.3  and  Discovery  studio  visualizer.  The
results are presented in Figure 3 and Table 7. The
result shows the specific amino acids (with arrow) that
contributed  to  the  conventional  hydrogen  bond
interaction between the frontrunner phytocompounds
and Caspase 3.

Discussion
The study aimed to  use in  silico  molecular  docking
simulation  to  compare  the  binding  affinities  of
phytocompounds  from  the  African  natural  product
database to the reference compounds against Caspase
3. The phytocompounds should have no violation of
Lipinski's  rule  of  five,  with  no  predicted  toxicity  and
positive bioactivity score. Due to the high cost of drug
discovery  and  development  and  the  required  time,
creating new medications has proven challenging. The
"in silico" method of drug discovery and design, also
known as computer-aided drug design, is now widely
used in preliminary research to minimize the chances
of  compound  failure  in  the  later  stages  of  drug
development.  Computer-aided  drug  design
components  like  molecular  docking,  molecular
dynamics,  quantitative  structure-activity  relationship,

absorption,  distribution,  metabolism,  excretion,  and
toxicity tool and their precise predictions speed up the
discovery and development of new drugs (21, 22)

On  the  other  hand,  medicines  and  medicinal
substances have historically been derived from nature,
primarily plants. Plant extracts have been evaluated for
different  pharmacological  activities  with  promising
results  (23,  24).  Most  medicines  today  are  either
isolated or created from isolates derived from natural
sources. Based on their use in conventional medical
procedures,  most  currently  utilized  medications  are
made  from  natural  sources  (25).  More  novel
compounds  are  being  isolated  from  plants  and
deposited in chemical databases (26). There are also
general biological and specialized databases on which
thousands  of  proteins  are  deposited  to  aid  scientific
research  (22).

During drug design, pharmaceutical  chemists use
Lipinski's rule of five to predict oral bioavailability. This
study  sourced  6,511  phytocompounds  from  African
plants via the African natural product database. Drug-
likeness  was  assessed  using  DataWarrior  based  on
Lipinski’s rule. A compound is likely orally effective if it
meets these criteria: a) molecular weight under 500; b)
octanol/water  partition  coefficient  (Log  P)  under  5;  c)
no  more  than  five  hydrogen  bond  donors;  d)  no  more
than  ten  hydrogen  bond  acceptors  (27-29).  Of  the
6,511  phytocompounds  analyzed,  3,814  met  all
Lipinski’s  rule  criteria.
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Figure 3. Frontrunner phytocompounds-Caspase 3 binding amino.
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Table 7. Frontrunner phytocompounds with the interacting amino acids.

No. Frontrunner Phytocompounds Amino Acids
1 Tribulus saponin aglycone 2 ARG 207, SER 205
2 Sonchuside ARG 207, PHE 250
3 Abyssinoflavone V SER 209
4 Limonyl ARG 207, PHE 250
5 3-acetylsesterstatin 1 ARG 207
6 Beta-anhydroepidigitoxigenin TRP 214
7 Retusolide B ARG 207, PHE 250
8 Tingenin B SER 209
9 Abyssinin I SER 209
10 7-deacetoxy-7-oxogedunin PHE 250, TRP 214
11 Uguenensene SER 209
12 Isoferprenin -
13 Siphonellinol C SER 205
14 Sipholenol A ARG 207, PHE 250
15 Abyssinone I GLU 248
16 Sigmoidin F SER 209, GLU 248
17 Limonin ARG 207

The DataWarrior application used for Lipinski's rule
and  preliminary  toxicity  assessment  employs  a
precomputed collection of structural pieces that trigger
toxicity alerts when discovered in the structures under
investigation.  To  compile  these  fragment  lists,  all
compounds  from  the  Registry  of  Toxic  Effects  of
Chemical Substances (RTECS) database known to be
active in a specific toxicity  class were thoroughly split
(30).  The  phytocompounds  were  first  severed  during
the process, with each rotating link leading to a set of
core fragments. These were then used to reconstruct
each substantial substructure of the parent molecule. A
substructure  search  process  was  then  used  to
determine the frequency of  any fragment (core and
created fragments) within all chemicals in that toxicity
class. It also found these fragment frequencies in the
structural data of over 3000 traded medications. Any
fragment  was  considered  a  risk  factor  if  it  was
commonly encountered as a substructure of dangerous
chemicals  but  never  or  only  infrequently  in  traded
pharmaceuticals.  This assumption was based on the
view that most drugs sold are free of or have less toxic
effects.  Predicated  on  this  described  fragments
exploration,  1897  phytocompounds  had  no  in  silico
mutagenicity,  tumorigenicity,  irritant,  or reproductive
effects.  These  phytocompounds  contained  no
fragments or fragments widely recognized to have any
of the toxicities enumerated in the Registry of Toxic
Effects of Chemical Substances.

As  shown  in  Table  4,  the  molecular  docking
findings  revealed  120  phytocompounds  with  higher
binding  affinity  than  the  reference  compounds.  Lower
binding affinity indicates improved ligand binding. The

most  significant  magnitude  negative  value,
representing  the  most  positive  conformation  of  the
complex  formed  whenever  the  ligand  invested
efficiently  binds  with  the  protein's  active  site,
determines  the  significance  of  binding  affinity  values.
As  can  be  seen,  the  mean  binding  affinity  scores  are
negative. This happens because protein-ligand binding
occurs solely when the free energy change is negative.
The  G-level  difference  between  complexed  and
unconjugated  free  states  is  commensurate  to  the
stability of the protein-ligand interaction. Once ∆G is
minimal  in  the  system,  protein  folding  and  protein-
ligand binding occur (31, 32). As a result, negative ∆G
scores indicate the stability of the arising complexes
with the receptor  molecules,  a necessary feature of
effective drugs (33).

Compounds  with  better  binding  affinities  than  the
reference  compounds  used  were  subjected  to
molinspiration  bioactivity  prediction  for  protease
inhibition since Caspase is a protease. The result of the
bioactivity prediction presented in Table 5 shows that
82 phytocompounds out of 120 compounds analyzed
are active as protease inhibitors based on the range of
bioactivity  score  on  the  molinspiration  platform.  In
molinspiration,  biological  activity  is  measured  by  a
bioactivity score that is categorized as active (0.00 to
0.5),  moderately  active  (0.00  to  -0.5),  and  inactive
(less than -0.5) (13).

Bioavailability  Radar  is  displayed  for  a  rapid
appraisal  of  drug-likeness.  Six  physicochemical
properties are considered: lipophilicity,  size,  polarity,
solubility, flexibility, and saturation. A physicochemical
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range on each axis was defined by descriptors such as
size, lipophilicity, H-bonding characteristics, rotatable
bond,  aromatic  ring counts,  etc.,  and depicted as a
pink area in which the radar plot of the molecule has to
fall  entirely  to  be considered druglike (34,  35).  The
results  of  the  pharmacokinetic  prediction  of  the
frontrunner phytocompounds presented in Figure 2,
as a bioavailability radar, revealed that only 17 out of
82 phytocompounds analyzed fit optimally into the pink
region of the bioavailability radar map.

The 17 phytocompounds with optimal bioavailability
radar  prediction  were  subjected  to  further  toxicity
prediction  on  the  pkCSM  application.  The  result  is
presented  in  table  6  with  the  predictions  of  the
reference  compounds  too.  Seven  parameters  were
predicted;  AMES  toxicity,  hERG  I  inhibitor,  hERG  II
inhibitor, Hepatotoxicity, Minnow toxicity, T. Pyriformis
toxicity, Max. tolerated dose (human), Oral Rat Acute
Toxicity  (LD50),  and  Oral  Rat  Chronic  Toxicity.  The
Ames test is a procedure that uses the amino acids
needed  by  the  bacterial  strains  Salmonella
typhimurium and Escherichia coli to identify mutations.
This mutation test aims to find revertant bacteria that
give the original bacteria its ability to synthesize an
essential amino acid back. The revertant bacteria can
still  grow when the original strain's necessary amino
acid is absent (36).

Ames test results have shown that it is susceptible
to  predicting  carcinogens:  80%  of  Ames  evaluation
mutagens  are  also  cancerous,  while  a  negative
outcome has no discriminatory significance (a chemical
negative  in  Salmonella  has  the  same  possibility  of
being  either  a  non-carcinogen,  a  non-genotoxic
carcinogen, or a genotoxic carcinogen acting through a
process not observed by the Ames test (37).  In the
creation of cardiac action potentials, HERG is crucial.
Hence, QT prolongation and unexpected cardiac death
are  linked  to  hERG  channel  inhibition.  Due  to  this
significant  outcome,  evaluating  hERG  blockade  by
compounds during the early stages of drug discovery
and  development  is  crucial.  Using  various  drug
descriptors  like  log  P  and  log  S  and  modeling
techniques like estate fingerprint, CDK fingerprint, and
secondary  structural  fingerprint,  this  inhibitory  effect
can be predicted in silico  (38).  Minnow toxicity is  a
crucial  foundation  for  risk  and  hazard  analysis  of
substances in the aquatic system (39). The toxicity of
Tetrahymena pyriformis is frequently used as a toxic
end state. From the result in Table 6,  Abyssinone I
recorded positive  for  Ames toxicity  with  one of  the
reference compounds, Flubendazole. Sipholenol A and
Sigmoidin F were predicted positive as hERG inhibitors
and  Flubendazole.  Abyssinoflavone  V,  Isoferprenin,
Beta-anhydroepidigitoxigenin,  Tingenin  B,
Flubendazole,  and  Pranoprofen  were  predicted  to
possess hepatotoxic effects.

The  conventional  hydrogen  bond  interaction
between the amino acids of Caspase and each of the
frontrunner  phytocompounds  were  analyzed  as
presented in Figure 3 and Table 7. Observation of the
interactions of the reference compounds with Caspase
3,  as shown in Figure 1  and Table 3,  reveals the
specific  amino  acids-conventional  hydrogen  bond
interactions,  which  are  probably  responsible  for  the
actions  of  these  reference  compounds.  The  amino
acids include ARG 207, SER 205, SER 209, ASN 208,
and PHE 250. Now, observation of Figure 3 and Table
7  also  reveals  the  specific  amino  acids  interaction  of
the frontrunner compound with Caspase 3, similar to
those  of  the  reference  compounds,  except  Beta-
anhydroepidigitoxigenin, Abyssinone I, 7-deacetoxy-7-
oxogedunin, Sigmoidin F and Isoferprenin   

Based  on  the  simulation  research  design,  the
outcomes of in silico research translate well throughout
in vitro or in vivo studies. Before synthetic chemistry
synthesis, in silico techniques are frequently used to
examine  compound  libraries'  bioavailability,  toxicity,
and promising bioactivity  (40).  Similarly  to  that,  we
planned the design of  the current in  silico  study to
increase  the  likelihood of  getting  positive  results  in
bioassays. One of the quickest and most accurate in
silico methods for analyzing the molecular interactions
and chemical bonding between a ligand and a protein
is molecular docking (41). To observe and analyze the
molecular interaction and ligand binding of compounds
with studied biomarkers, molecular docking research,
and in vivo studies are often combined (42-48). This
discussion demonstrates the reliability of in silico drug
discovery  and  development  studies,  supports  and
validates the methodology used in the current in silico
study, and supports the notion that the African natural
product database contains promising phytocompounds
that  could  have  the  potential  to  act  as  Caspase  3
inhibitor.

Conclusion
Inhibitors  of  Caspase  3  can  offer  a  remedy  for  the
pharmaceutical  intervention of  beta-cell  apoptosis  in
diabetes since options for treating beta-cell apoptosis
are  a  significant  therapeutic  need.  In  this  study,  the
findings  imply  that  Tribulus  saponin  aglycone  2,
Sonchuside,  Abyssinoflavone  V,  Limonyl,  3-
acetylsesterstatin  1,  Retusolide  B,  Tingenin  B,
Abyssinin I, Uguenensene, Siphonellinol C, Sipholenol
A, Sigmoidin F and Limonin and possibly their  plant
sources are candidates for further studies as Caspase 3
inhibitors. These phytocompounds are predicted to be
druglike,  with  optimal  pharmacokinetic  parameters.
The compounds possess better binding energies than
the  reference  compounds  used  for  the  study.  The
phytocompounds  also  have  similar  conventional
hydrogen bond interaction with Caspase 3 compared to
the reference compounds. Validating this in silico work
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requires  further  thorough  research  using  different
models, such as in vitro and in vivo assays using the
phytocompounds  or  extracts  containing  the
phytocompounds. Restate the problem, summarize the
paper, and discuss the implications and future research
direction. This conclusion must address the objective of
the study.
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